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Describing The Quantum Many-Body Problem

Figure: Parallel cross interpolation for high–precision calculation of 
high–dimensional integrals - Scientific Figure on ResearchGate

•Ψ describes a quantum state, whether a single particle or a complex molecule.

•Encoding a generic many-body quantum state requires exponential amount of information

– Nature Simplifies this complexity 
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• Quantum Monte Carlo (QMC)  - Samples Finite Relevant Physical Configurations 

• General Tensor Networks

• QMC and Sign Problem

• General Tensor Networks: inefficiency of current compression approaches in 
high-dimensional systems

• The challenges in existing techniques makes it complex to analyze dynamical 
properties of high-dimensional systems and to exact ground-state properties of 
strongly interacting fermions

Existing Techniques and Challenges
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Solving the Quantum Many-Body Problem 
with Artificial Neural Networks

AI and ML has worked well in speech 
and text recognition, but the benefits of 
AI in solving many body problem are yet 
to be explored. 

Can artificial neural network modify and 
adapt itself to describe and analyze a 
quantum system?

If it can, we could use this ability to solve 
the quantum many-body problem in 
those regimes so-far inaccessible by 
existing exact numerical approaches.

“Artificial Neural Networks Learn Better When They Spend Time Not Learning at 
All.” Today, today.ucsd.edu/story/artificial-neural-networks-learn-better-when-they-
spend-time-not-learning-at-all. Accessed 11 Dec. 2024. 



Why Neural Network for 
Many-Body Problems?
A Presentation on Quantum Many-Body 
Problem and Neural Networks --- Yueying Wu

7



Overview
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• - Many-body problems involve exponential 
complexity in describing quantum states.

• - Key Insight: They require dimensional 
reduction and feature extraction.



Dimensional Reduction and Feature 
Extraction
• - Dimensional Reduction: Simplifies high-dimensional data (e.g., 

Hilbert space).

• - Feature Extraction: Identifies and encodes relevant 
correlations in data.

• - Quantum Context: Wavefunctions are high-dimensional but 
contain structured correlations.
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Why Neural Networks?
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• - Efficiently approximate high-dimensional 
functions.

• - Capture non-local correlations better 
than tensor networks.

• - Flexible architectures adapt to symmetry 
and specific problems.

• - Systematic accuracy improvement by 
increasing hidden neurons.



Previous Applications in Physics
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• - Phase Classification:

• Carrasquilla & Melko (2017): Neural 
networks classify quantum phases.

• - Phase Transitions:

• Wang (2016): Detecting phase transitions 
via unsupervised learning.

• - This Work: Approximates wavefunctions 
for ground state and dynamics problems.



Conclusion
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• - Neural networks open a new avenue for 
solving quantum many-body problems.

• - They excel in dimensional reduction, 
feature extraction, and modeling 
correlations.



Terminologies 
Neural quantum state, variational Monte Carlo and 
restricted Boltzmann machine
----Tai
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Neural quantum state
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Neural quantum state
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Ground state can be found by minimizing energy 
with respect to network parameter 
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Neural quantum state
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Ground state can be found by minimizing energy 
with respect to network parameter 
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Variational Monte Carlo
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Variational Monte Carlo
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Variational Monte Carlo
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Variational Monte Carlo
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Variational Monte Carlo
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Restricted Boltzmann Machine
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Restricted Boltzmann Machine
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Restricted Boltzmann Machine

     , 

,

,  
∑ ௩



ିா(௩,)

∈ ,ଵ 

24



Restricted Boltzmann Machine

     , 

,

,  
∑ ௩



ିா(௩,)

∈ ,ଵ 

25



Restricted Boltzmann Machine





   



It’s actually just single hidden layer neural network
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Determining the ground state 

----Xiaocheng
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Finding the Ground State: Algorithm
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StartStart

Initial guess of network parameters 𝑊Initial guess of network parameters 𝑊

Monte Carlo sampling of statesMonte Carlo sampling of states

𝐸 and estimate of its gradient𝐸 and estimate of its gradient

Propose new 𝑊Propose new 𝑊

StopStop

Stochastic Reconfiguration (SR) or 
Stochastic Gradient Descent (SDG) 
can be used in new 𝑊 proposal.



Finding the Ground State: Results
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𝛼 =
ெ

ே
. Here M, N is number of hidden and visible variables.

• Even with minimal 𝛼
the network learns the 
info of ground state and 
gives the right result.

• Networks w/ higher 
value of 𝛼 converge 
slightly better



Finding the Ground State: Results
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Two prototypical spin models were used to validate the scheme
Transverse-field Ising (TFI)
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External Transverse Field      Nearest-Neighbor Interaction

Antiferromagnetic Heisenberg (AFH)
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Nearest-Neighbor Interaction

Favors alignment

Favors opposite alignment



Finding the Ground State: Error
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1D TFI for an 80-spin chain 1D AFH for an 80-spin chain 2D AFH on 10-by-10 square lattice

 ேொௌ ௫௧ ௫௧

• Systematical decrease in 
error when increase number 
of hidden variables (𝛼)

• By increasing 𝛼 one can get 
higher accuracy than other 
common methods (Jastrow, 
EPS, PEPS)

• A network’s accuracy 
depends on model 
parameters (ℎ in this case)



Time evolution 
----Tian
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Time-dependent Variational Monte Carlo
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Static

Dynamic

minimize

minimize



Time-dependent Variational Monte Carlo
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StartStart

Initial guess of network parameters 𝑊Initial guess of network parameters 𝑊

Monte Carlo sampling of statesMonte Carlo sampling of states

𝐸 and estimate gradient of R𝐸 and estimate gradient of R

Propose new �̇�Propose new �̇�

StopStop

Weight of the network

𝑾 = න �̇�𝒅𝒕𝑾 = න �̇�𝒅𝒕

Use gradient descendent 
until the convergence 

criteria is met



Time-dependent Hamiltonian
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Numerical results of NQS
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Numerical result from NQS

Numerical result from t-DMRG



Numerical results of NQS
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• Numerical result is close to 
the exact result

• Numerical result converges 
to the exact result as the 
number of hidden variables 
increases

• All numerical results fails to 
converge to the exact result 
at long time



Citation evaluation 
----Yizhou
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Citation evaluation

According to Web of Science

1549 citations so far

39

Mainly physics papers. 
Also covering math, CS, chemistry…
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• Improvements 
• Numerical stability (M. Schmitt and M. Heyl, Quantum many-body dynamics in two 

dimensions with artificial neural networks, Phys. Rev. Lett. 125, 100503 (2020))

• Noise reduction (A. Sinibaldi, C. Giuliani, G. Carleo, and F. Vicentini, Unbiasing time-
dependent variational Monte Carlo by projected quantum evolution, Quantum 7, 1131 (2023))

• Speedup (Gui, Shaojun, Ho, Tak-San and Rabitz, Herschel, Discrete real-time learning of 
quantum-state subspace evolution of many-body systems in the presence of time-dependent 
control fields)

• Challenge
• Lack theoretical support (Hsin-Yuan Huang et al, Provably efficient machine learning for 

quantum many-body problems.Science377,eabk3333(2022) )

Since then
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• Quantum gravity
• To find Hamiltonian constraints 
(Hanno Sahlmann and Waleed Sherif 2024 Class. Quantum Grav. 41 225014)

• Lattice gauge theory
• sign problem; dynamics in real time
(Apte et al, Deep learning lattice gauge theories, Physical Review B)

• ……

In other fields



Thank you! 
Feel free to ask any questions~

Team 14
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