NANOGrav Hints to Primordial Black Holes as Dark Matter

V. De Luca, G. Franciolini, and A. Riotto

Group 11 Presentation: James Oh, Kaitlyn Prokup, Matthew Nelson, Mohammad Saad, Sarah Rogers-Pastio

PHYSICAL REVIEW LETTERS 126, 041303 (2021)

Editors' Suggestion

NANOGrav Data Hints at Primordial Black Holes as Dark Matter

V. De Luca[®],^{1,*} G. Franciolini[®],^{1,†} and A. Riotto^{1,2,‡} ¹Département de Physique Théorique and Centre for Astroparticle Physics (CAP), Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland ²INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Roma, Italy

(Received 18 September 2020; accepted 23 November 2020; published 28 January 2021)

The NANOGrav Collaboration has recently published strong evidence for a stochastic commonspectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitational waves produced during the formation of primordial black holes from the collapse of sizeable scalar perturbations generated during inflation. This possibility has two predictions: (i) the primordial black holes may comprise the totality of the dark matter with the dominant contribution to their mass function falling in the range $(10^{-15} \div 10^{-11})M_{\odot}$ and (ii) the gravitational wave stochastic background will be seen as well by the Laser Interferometer Space Antenna experiment.

DOI: 10.1103/PhysRevLett.126.041303

Introduction.—The NANOGrav Collaboration has recently published an analysis of 12.5 yrs of pulsar timing data [1], reporting strong evidence for a stochastic common-spectrum process. The latter may be compatible with a gravitational wave (GW) signal with strain ampliThe PBH abundance.—The most common formation scenario for PBHs is through an enhancement of the power spectrum of the comoving curvature perturbation ζ during inflation, at scales much smaller than those probed by cosmic microwave background (CMB) observations [6–8].

What is the NANOGrav Collaboration?

What did they observe?

What are Primordial Black Holes?

What are the authors' conclusions?

SUMMARY

Model of a Pulsar and its Detected Intensity

NANOGrav Detects Deviations in Pulsar Timing

What Are Primordial Black Holes?

SUMMARY

Regions of High Density Could Cause a Primordial Black Hole

SUMMARY

Primordial Black Hole Formation by Collapse of Overdense Regions in the Early Universe

How Could PBHs Account for the GW Background?

SUMMARY

The Formation of Primordial Black Holes Could Cause Gravitational Waves

Jeffrey Bryant, Wolfram|Alpha, LLC

SUMMARY

Prior Works

The following papers are

Gravitationally Collapsed Objects of Very Low Mass

Black Holes in the Early Universe

Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations

Primordial Black Holes- Perspectives in Gravitational Wave Astronomy

Analysis of Results & Conclusions

Key Conclusions

How were these conclusions reached?

ANALYSIS

Primordial Black Hole Mass Distribution Model

Authors derived a model for the **PBH mass distribution** from early universe perturbations

ANALYSIS

Detection of Mass Distribution Model

ANALYSIS

Gravitational Wave Spectrum of Primordial Black Holes

Mass distribution corresponds to a gravitational wave spectrum

ANALYSIS

Gravitational Wave Spectrum Relation to NANOGrav

Citation Evaluation

The paper boasts of a good citation record! Since its publication in 2021:

CITATION EVALUATION

This paper has been increasingly cited since its publication

There have been significant developments since this publication.

The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

GABRIELLA AGAZIE,¹ AKASH ANUMARLAPUDI,¹ ANNE M. ARCHIBALD,² ZAVEN ARZOUMANIAN,³ PAUL T. BAKER,⁴ BENCE BÉCSY,⁵ LAURA BLECHA,⁶ ADAM BRAZIER,^{7,8} PAUL R. BROOK,⁹ SARAH BURKE-SPOLAOR,^{10,11} RAND BURNETTE,⁵

Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony

PUB: 28 JUN 2023

Has NANOGrav Found First Evidence for Cosmic Strings?

Simone Blasi,^{1,*} Vedran Brdar,^{1,†} and Kai Schmitz^{2,‡} ¹Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany

CONSTRAINTS ON PRIMORDIAL BLACK HOLES

Bernard Carr,^{1, 2, *} Kazunori Kohri,^{3, 4, 5, †} Yuuiti Sendouda,^{6, ‡} and Jun'ichi Yokoyama^{2, 5, 7, 8, §}

CITATION EVALUATION

References

Background Image: Alexander Antropov