Group 9

Twisted Double Bilayer Graphene

https://www.nature.com/articles/s41563-023-01653-7

nature materials

Article

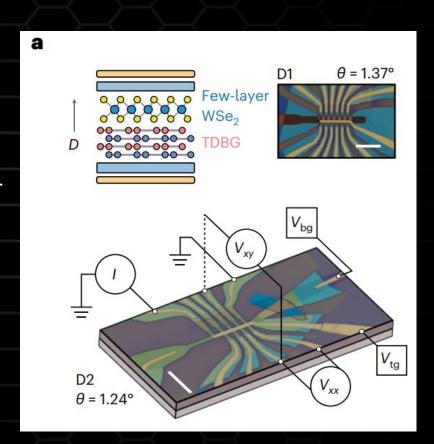
https://doi.org/10.1038/s41563-023-01653-7

Superconductivity in twisted double bilayer graphene stabilized by WSe₂

Received: 21 December 2022

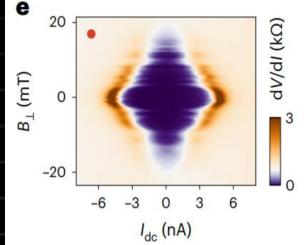
Ruiheng Su ^{© 12}, Manabendra Kuiri ^{© 12}, Kenji Watanabe ^{© 3}, Takashi Taniguchi ^{© 4} & Joshua Folk ^{© 12} ⊠

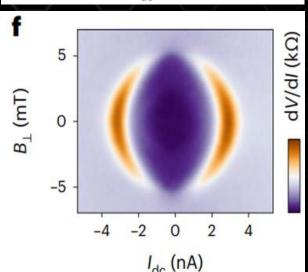
Accepted: 25 July 2023


Daniel Pitagora
Mina Savic
August Schwoebel
Ashish Samantaray
Maxwell Rizzo

Outline

- Summary of the article
- Comparison of article's results with previous works
- Critical analysis by the team
- Summary of conclusions by the author's and the team
- Citation evaluation and field evolution

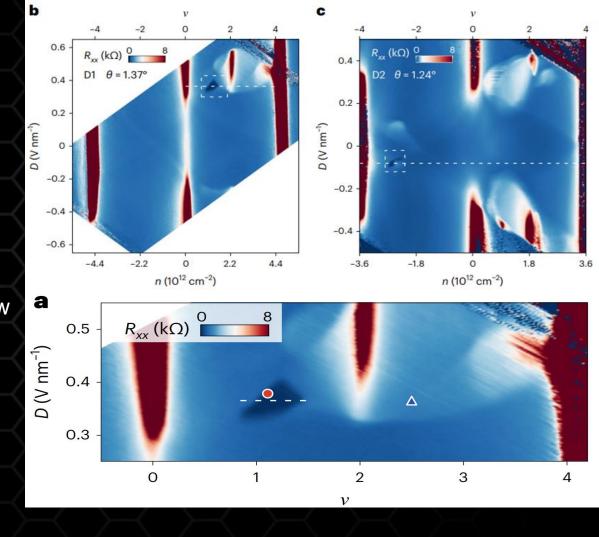

Summary of the article


- Twisted double bilayer graphene (TDBG) bounded by WSe₂ layer exhibits superconductivity
- Electrical gates, V_{tg} and V_{bg}, control carrier density (n) and displacement field (D)
- Superconductivity appears in isospinunpolarised phases, near transitions to a polarized phases.

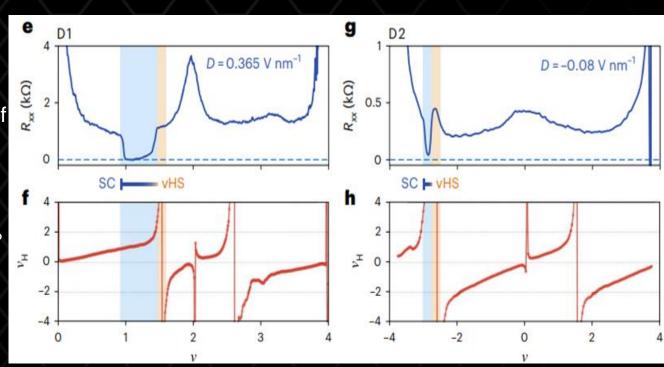
Results Comparison

- TDBG bounded by WSe₂ exhibits superconductivity over a different parameter range than twisted bilayer graphene (TBG).
- D2 Lacks the Fraunhofer oscillations, which is characteristic to many other low-T_c graphene superconductors.
- D2 behavior not well explained by current symmetry breaking TDBG theory, or Joule heating.

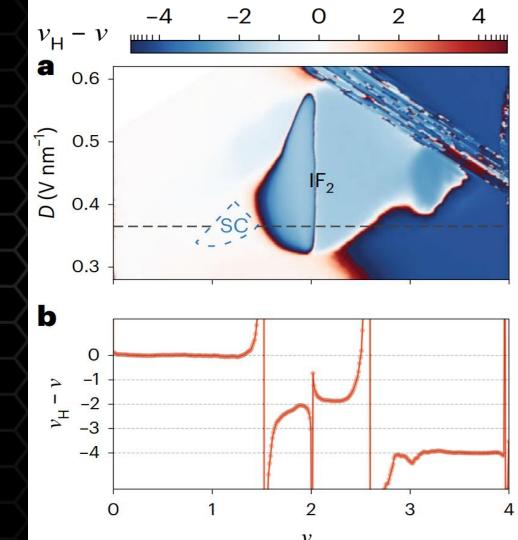
D1 1.37°


D2 1.24°

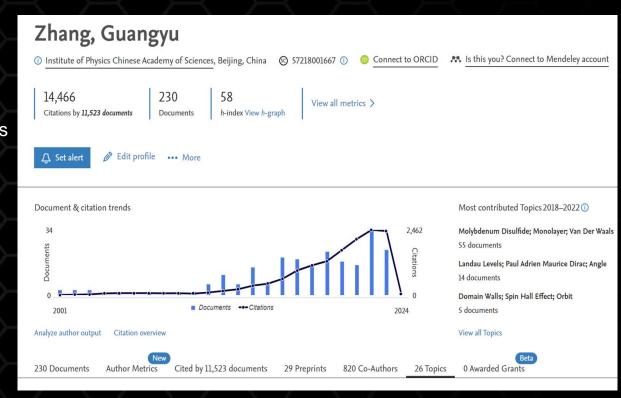
Critical Analysis


Experimental Results

- Superconductivity!
- θ=1.37°: Differential resistance lies within the range of experimental uncertainty of 0 at around T=80mK
- θ=1.24°: Superconducting below T=40mK, differential resistance on the order of 10 Ohms
 - Addressed possible alternative explanations for the low-resistance regions in D2, but claims likelihood is low


Superconductivity emerges from high density of states

- Superconducting in blue, van Hove singularities in orange
 - vHS where density of states diverges
- Consistent findings in θ=1.37° and θ=1.24° systems


Superconductivity emerging in proximity to isospin polarized bands

- Superconductivity appears near transitions to isospin polarized phases
 - Evidence for correlation between the two properties, but no claim that they are indeed correlated
- ν_H ν is a measure for isospin polarization

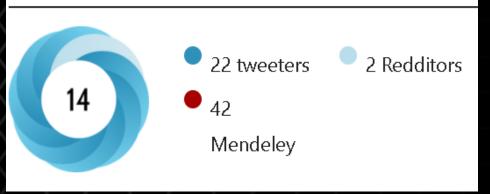
Critical Analysis

- Reproducibility
 - Paper has detailed methods section that describes sample fabrication and transport studies
 - Producing TDBG can be tricky!
- Peer Review
 - Guangyu Zhang, Institute of Physics, CAS
 - Other reviewer(s) is/are anonymous
- Conflict of Interest
 - The authors have declared no competing interests.

Main Conclusions

Authors Conclusions:

- Superconductivity and density of states
 - Correlated for TDBG!
- Stability from few-layer WSe₂
 - D>0 in the conduction band (v>0)
 - D<0 in the valence band (v<0)
- Transitions to isospin polarized phases
 - Potentially correlated to superconductivity


Group Conclusions:

- Isospin polarization correlation has merit
 - Should be investigated further
- More questions than answers...
 - Isospin polarization transitions
 - WSe₂-invoked stability
 - Twist angle

Citation Evaluation

- Published August 28th, 2023
 - Overy recent publication!
- Cited just 6 times
- Accessed 6665 times
- Altmetric Score:
 - 87th percentile (41,000/ 338,481)
 - Similar age (all journals)
 - 56th percentile (34/75)
 - Similar age (Nature Materials)

Online attention

Evolution of the Field

- Long-term evolution
 - Too soon to tell
- Short term evolution
 - Few new publications on TDBG
 - Some review, others add new information
 - Topological JosephsonJunctions, edge states, etc.

Dr. Meow

@Dr_Nyaa

28 Aug 2023

