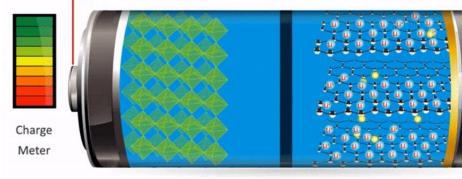

High-performance Lithium Battery Anodes Using Silicon Nanowires

Team 7: Kaiming Liu, Yi Liu, Jennifer Lopez, Dillon McClure, Xavier Mleziva

Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., & Cui, Y. *Nature Nanotechnology*, *3*(1), Article 1.

Brief History of Lithium Batteries

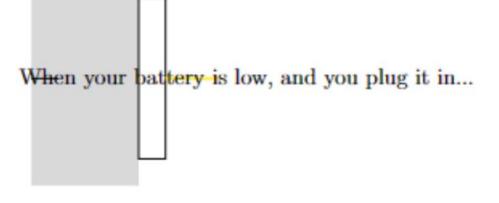


Reddy, M.V. et al, "Brief History of Early Lithium-Battery Development", Materials

How do Lithium Batteries work?

- 4 major components:
 - \circ Cathode
 - \circ Anode
 - Electrolyte
 - \circ Separator
- While charging: electrolyte carries Li-ions from cathode to anode and vice versa

URL: https://rb.gy/m8t79m


Discharge

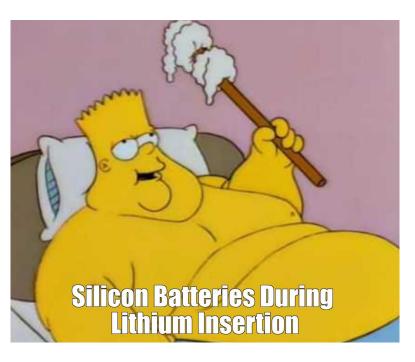
Composition of Modern Batteries

- Modern batteries are typically made with graphite anodes
 - Relatively high charge capacity
 - Cheap to produce
 - \circ Long life cycle

 Perfect for mass production, but other materials are much more powerful.

Meme provided by ChatGPT

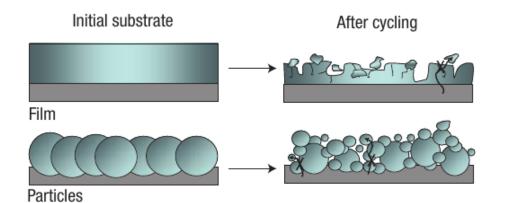
Advantages of Silicon Anodes



- Silicon has the highest known theoretical charge capacity
 - ~4200 compared to ~372 in graphite*
- Silicon anodes allow for batteries with much longer life cycles with many potential uses
 - Electric vehicles
 - Implantable medical devices
- *using units where (1 mAh = 1 g)

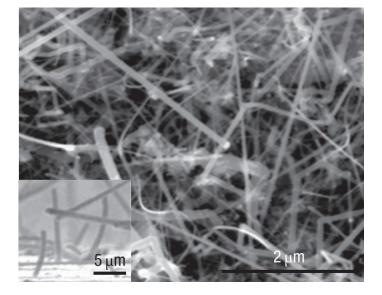
Problems With Silicon Anodes

- Typically implemented as either a bulk film or nanometer-sized particles.
- Silicon anodes greatly increase in volume during lithium insertion
 - Up to 400% of their original volume



URL: https://shorturl.at/qxA79

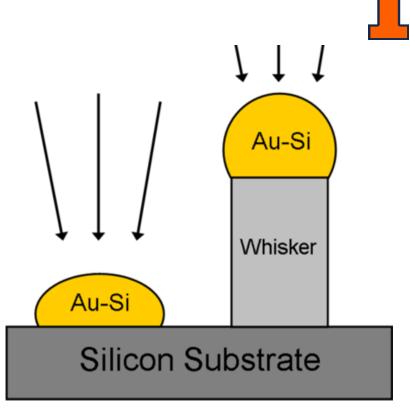
Problems With Silicon Anodes



- Contracts during lithium extraction
 - Causes much of the material to 0 lose contact with the current collector
 - Significantly decreases charge Ο capacity

Basics of Silicon Nanowires

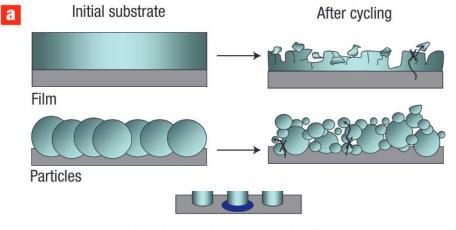
- Referred to as 1-D materials due to their aspect ratios
- Function as a the building blocks for nanoscale electronics
 - Have many applications: lithium batteries and sensors
- Commonly made using VLS Method (Vapor-Liquid-Solid)


Summary of our article

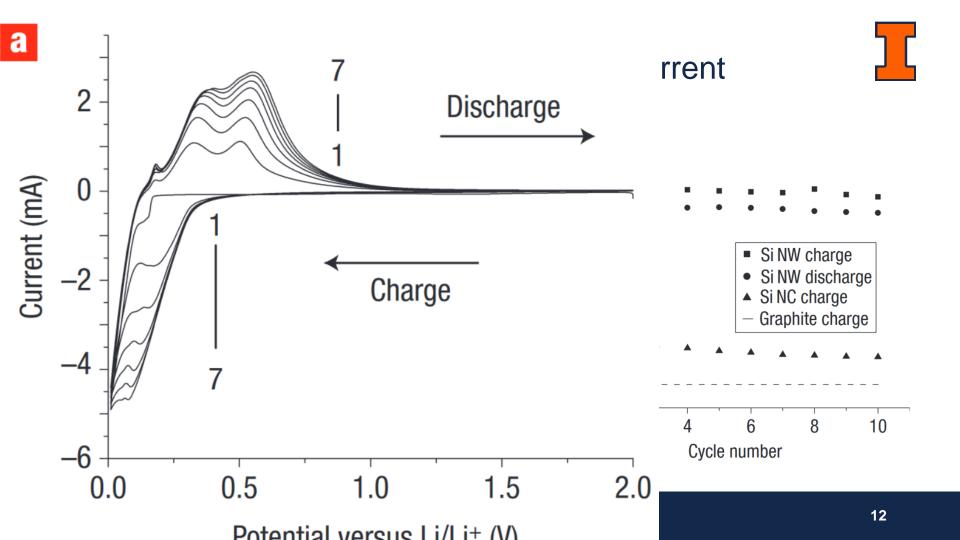
- Described issues with silicon anodes in Li-ion batteries
- Showed that one solution is to introduce silicon nanowires
 - Accommodate strain on and growth of the silicon
- Achieved theoretical charge capacity of silicon anodes
 - Maintained discharge capacity close to maximum

Methods

- Single-crystalline SiNWs were grown inside a tube furnace using VLS method
- Steps of VLS Method:
 - Au catalyst was added to stainless steel substrate
 - Heated to 530°C and silane was added
 - SiNWs grown through chemical reaction

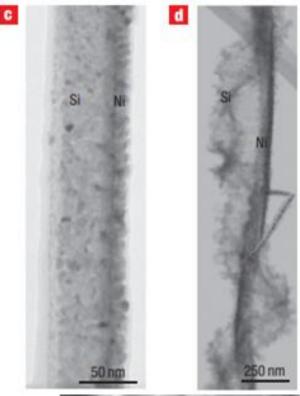


URL: https://rb.gy/gt3x8u

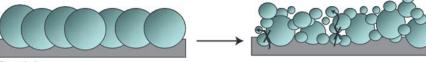

Effects of Cycling on Lithium

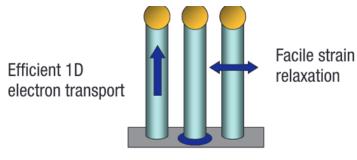
Ι

- Films and particles break down due to wear and tear
 - Expansion of the material
- Nanowires react to cycling by increasing
 - Diameter
 - \circ Length


Good contact with current collector

SEM Can be Used to Image the Nanowires

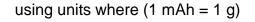

- Dimensional Increases
 - Diameter
 - Length
- Continuous after charging
- Attached to Ni backbone



Deformation adaptability of Silicon Nanowires

- Small diameter of Silicon Nanowires
 - Better accommodation of the large volume changes
 - Avoid pulverization
 - Good contact with current
 collector → minimal capacity fade

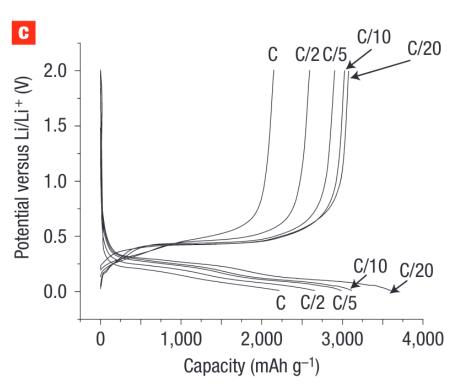
Particles



Good contact with current collector

Capacity and life cycle of Silicon Nanowires

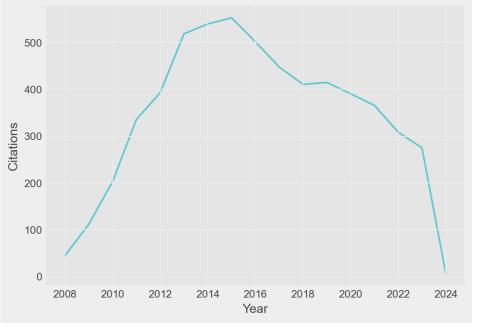
- Higher capacity
 - · 4200; 3500
- Longer life cycle
 - 10 cycles



Performance under high current

- High capacities at higher currents
 - Rate: 1C (1h for per half cycle)
 - Capacity: 2100
- Great cyclability at the fast rates
 - Rate: C/5 (5h for per half cycle)
 - Capacity for 20 cycles: 3500

*using units where (1 mAh = 1 g)



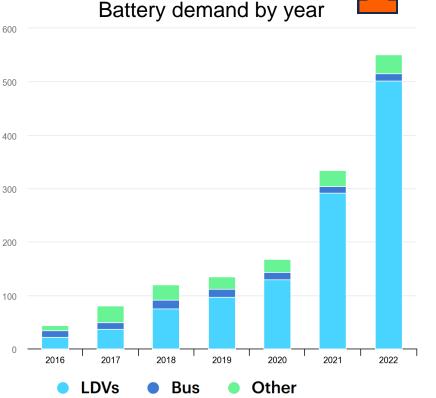
Summary and Conclusions

- Graphite anodes are only a compromise because they don't pulverize
- Silicon film/crystal anodes offer higher capacity, but pulverize after insertion
- Silicon nanowires can accommodate strain while retaining good transport and contact

Citation Evaluation

Citations from SCOPUS

5,825 Total citations


- 99 percentile in citations
- Sustainability regulations pushed for advancements in battery technology
- Competing technologies:
 - Lithium-metal, lithium-air, and lithium-sulfur
- Cui moved on to lithium-metal

Zheng, Guangyuan et al. "Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes." *Nature nanotechnology.* 9.8 (2014): 618–623. Web.

Citation Evaluation and Battery Anode Technology Today

Silicon Nanowire Anodes Today

- Demand mostly from transportation sector
- Tesla added 5 percent silicon in batteries
- One of the authors, Yi Cui cofounded Amprius in 2008
 - Pure silicon anode
 - Raised nearly half a billion dollars in 2022 with two others to commercialize

https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteries

Amprius Silicon Nanowire Batteries

Performance Metric	Graphite Anode Battery Cells ⁽¹⁾	amprius
Anode Capacity (mAh/g)(1)(2)	335-355	1,500-2,500
Specific Energy (Wh/kg)	~215-285	360-500
Energy Density (Wh/L)	~530-715	890-1,400
Charging Time to 80%	30 minutes	<6 minutes ⁽⁴⁾
Rate Capability/Power	Up to 10C	Up to 10C
Cycle Life	500-1,000 cycles	200-1,200 cycles
Operating Temperature	-20 to 60°C	-30 to 55°C

https://amprius.com/products/

URL:https://domics.me/