A Theory of Electrons and Protons. By P. A. M. DIRAC, St. John's College, Cambridge. (Communicated by R. H. Fowler, F.R.S.—Received December 6, 1929.)

Team 4:

Becket Hill, Paul Harmston, Yuntao Guan, Freddy Hancock and Nico Hackner A Voyage to the Dirac Sea A tale of two particles

Glimpses of a World Beyond Classical: Black-Body Radiation (Plank, 1900)

- EM radiation of body at finite temperature
- Classical: arbitrary energy allowed at each frequency
- Equipartition: leads to UV divergence...

• **Solution:** Plank used a mathematical "trick"

E(
u)=nh
u

discrete quanta of energy in each frequency mode

Glimpses of a World Beyond Classical: Photoelectric Effect (Einstein, 1905)

 Electrons emitted from material due to incident light

- Classical: Energy is proportional to intensity of light
- **Experiment:** Minimum frequency required, regardless of intensity...
- Solution: Einstein takes Plank's idea seriously... photons!

 $E = h\nu$

Each electron only absorbs one photon

Ponor, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Seems to be a pattern...

In 1926, Schrödinger put the pieces together

Relativity?

 We can motivate the Schrödinger equation by considering the classical energy of a *non-relativistic* particle

$$E = T + V$$
 non-relativistic dispersion
 $E o \hat{E} = i\hbar \frac{\partial}{\partial t}, \quad T o \hat{T} = \frac{\hat{p}^2}{2m}, \quad \hat{p} = -i\hbar \frac{\partial}{\partial x}$ put hats on things
 $\hat{E}\psi = (\hat{T} + \hat{V})\psi$ and...
 $i\hbar \frac{\partial}{\partial t}\psi = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi$ Schrodinger Eq!

The Klein-Gordon Equation: A Relativistic Quantum Theory

- In 1926, Klein and Gordon developed a quantum theory which is manifestly Lorentz invariant
- We can do so by quantizing the *relativistic* dispersion relation

 $E^{2} = (pc)^{2} + (mc^{2})^{2}$ relativistic dispersion $E \rightarrow \hat{E} = i\hbar \frac{\partial}{\partial t}, \quad p \rightarrow \hat{p} = -i\hbar \frac{\partial}{\partial x}$ put hats on it... again $\begin{bmatrix} \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} - \frac{\partial^{2}}{\partial x^{2}} + \frac{m^{2}c^{2}}{\hbar^{2}} \end{bmatrix} \psi = 0$ Klein-Gordon Eq! Lorentz invariant!But problems persist...

A Problem in KG Equation: Probability Density is not Positive-Definite

Continuity Equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0 \qquad \rho = i\hbar(\psi^* \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^*}{\partial t})$$

• One more initial condition can give us negative density:

$$\frac{\partial^2 \psi}{\partial t^2} \text{ in KG Equation } \Longrightarrow \psi|_{t=0} \& \begin{bmatrix} \frac{\partial \psi}{\partial t}|_{t=0} \\ \hline \end{bmatrix} \text{ are needed}$$

An extra degree of freedom

• Choose eigenstate as an example:

If
$$\psi = \Phi(\mathbf{r})e^{-iEt/\hbar} \Longrightarrow \rho = 2E|\Phi|^2 < 0$$
 for $E < 0$

How to Construct the Dirac Equation

Taking the square root of the KG Equation

- First-order in both space and time $(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t)\psi = \zeta\psi$
- Recover KG equation to get relativistic E-P relation again

$$(A\partial_x + B\partial_y + C\partial_z + \frac{i}{c}D\partial_t)^2 = \nabla^2 - \frac{1}{c^2}\partial_t^2 \qquad \zeta^2 = (\frac{mc}{\hbar})^2$$

• Four numbers are not enough, we need four matrices!

$$\{\gamma^{\mu},\gamma^{\nu}\}=2\eta^{\mu\nu}I_{4\times 4}$$

$$(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi = 0$$

• Probability density is positive-definite again Spinor! $\frac{\partial}{\partial t}(\psi^{\dagger}\psi) + \nabla \cdot (\psi^{\dagger}\alpha\psi) = 0 \qquad \rho = \psi^{\dagger}\psi \ge 0$

But, how to explain the NEGATIVE energy solution?

A Theory of Electrons and Protons: Accounting for Negative Energies

Problem:

Dirac equation implies negative energy solutions
 -> Electron could emit infinite photons

Solution:

 Negative energy states are all filled in a giant electron "sea" -> Pauli Exclusion applies

A Theory of Electrons and Protons: When a Vacuum isn't a Vacuum!

- So, the vacuum is not actually a vacuum??
- It's just an infinite negative charge!

- With an occasional "antielectron" hole
 - Dirac theorized this to be the proton

Oppenheimer first reading Dirac's "A Theory of Electrons and Protons" (colorized)

Stormy Seas: Oppenheimer's Response

- The proton can't be the anti-electron, since they need to annihilate each other
- If the proton and electron annihilated each other, the universe would be nothing but radiation
- There must be an infinite density of positive electricity to prevent the divergence of the E field to be infinite everywhere

How to detect a positron: instrumentation

Directly observe particle tracks

Piston + film allowed rapid observations Discovers ionizing cosmic rays

1927 Dmitri Skobeltsyn

Adds magnetic field to cloud chamber

1929 Chung-Yao Chao

Grad student at Caltech

First noticed positive charge particle tracks in cloud chamber

1933 Anderson's Discovery of the Positron!

Carl Anderson with his cloud chamber surrounded by an electromagnet, Caltech, 1932 (Caltech.edu)

- 1300 photographs, 15 positron tracks
- lead plate used to illustrate trajectory direction and determine sign of charge
- Close to electron charge, protons eliminated due to curvature

Implications of positron discovery

The Positive Electron

Anderson notes the following conclusions from the positron discovery.

CARL D. ANDERSON, California Institute of Technology, Pasadena, California (Received February 28, 1933)

"The positron should prove a stimulus to search for evidence of the existence of negative Protons."

"[the charge of the] positron is very probably equal to that of a free negative electron"

"If the neutron should prove to be a fundamental particle ... the proton will then in all probability be represented as a complex particle consisting of a neutron and positron."

Where is the Dirac Equation Now? From the Sea to QED

Used in modern quantum electrodynamics

Feynman in 1959 after discovering QED (colorized)

$$S_{
m QED} = \int d^4x\,\left[-rac{1}{4}F^{\mu
u}F_{\mu
u}+ar{\psi}\left(i\gamma^\mu D_\mu-m
ight)\psi
ight]
onumber \ \psi ext{ is a Dirac field!}$$

- Modern quantum field theory describing EM interactions
- The electron (ψ) still obeys a Dirac equation
- The modern "theory of electrons and p(r)hotons"

Dirac Equation and the Standard Model

Dirac kinetic term in the action for each fermion (ψ)

$$i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \longrightarrow i\gamma^{\mu}\partial_{\mu}\psi$$

e.g. The electroweak interaction

$$\mathcal{L}_{ ext{EW}} = \sum_{\psi} ar{\psi} \gamma^{\mu} \left(\! i \partial_{\mu} \! - g' rac{1}{2} Y_{ ext{W}} B_{\mu} - g rac{1}{2} oldsymbol{ au} \mathbf{W}_{\mu}
ight) \psi$$

...and quantum chromodynamics

$$\mathcal{L}_{ ext{QCD}} = i \overline{U} \left(\partial_{\mu} - i g_s G^a_{\mu} T^a
ight) \gamma^{\mu} U + i \overline{D} \left(\partial_{\mu} - i g_s G^a_{\mu} T^a
ight) \gamma^{\mu} D.$$
Up quark

duark

Only 1154 Citations

A Theory of Electrons and Protons. By P. A. M. DIRAC, St. John's College, Cambridge. (Communicated by R. H. Fowler, F.R.S.—Received December 6, 1929.)

- The Dirac Sea was a landmark paper that predicted the existence of antimatter
- Dirac's interpretation was made mostly obsolete by the development of modern QED
- Even though it wasn't as timeless as its predecessor (which has 6000+ citations), it was a fascinating look into Dirac's mind and the interesting conclusions he reached with the limited knowledge of his time.

Thanks for listening!!! Dirac Sea you later!!