Observation of the fractional quantum Hall effect in graphene

Team One
Nijaid Arredondo, Ahmed Alenezi, Cole Brookhouse, Praveen Balaji

Physics 596 Journal Club, Fall 2021
Overview

Goal: observe the fractional quantum Hall effect in graphene

Contribution: fabricate highly pure graphene sample

Outline:

- Quantum Hall Effect
- Optimization of Graphene Sample
- Results
- Criticism
- Impact
What is the Quantum Hall Effect?
The Classical Hall Effect

- A magnetic field B will deviate the path of charges towards the sides of a conducting material, creating a potential U_H transverse to the initial current I

- Measurements of U_H probe properties of the material, e.g. charge density, resistivity, conductivity
The Quantum Hall Effect

- QHE regime: low temperatures and large magnetic fields
- Plateaus of conductivity identified in a 2D semiconductor\(^1\):
 \[\sigma_{xy} = \nu \frac{e^2}{h}, \nu \text{ an integer} \]
- The integer QHE: electrons are localized at the edge of the surface and only conduct when their Landau level is filled\(^2\)

1 Von Klitzing, Dorda and Pepper, PRL (1980)
2 Laughlin, PRB (1981)
3 Tsui and Gossard, AIP (1981)

Transverse \((xy)\) and longitudinal \((xx)\) resistivities of a sample as a function of magnetic field.\(^3\)
The Fractional Quantum Hall Effect

- Plateaus began to be identified at fractional \(\nu \) soon afterward\(^1\) (see left)
- IQHE can be explained by non-interacting electrons; the fractional effect implies interactions!
- The fractional QHE: electrons form composite quasi-particles of fractional charge\(^2,3\)

1 Tsui, Stormer and Gossard, PRL (1982)
2 Laughlin, PRL (1983)
3 Jain, PRL (1989)
Fractional quantum hall effect: fractional charges!

A host of quasi-particle physics awaits, some Nobel Prizes

- 2D surfaces allow for anyons (rather than just bosons and fermions)
 - These probe physics due to topology, geometric phases

- Graphene is expected to contain such quasi-particles
Graphene: A Motivated Material for FQHE

- Observation of FQHE in graphene would advance study of e-e interactions
 - Graphene has nearly perfect lattice
- Complicated by electron scattering from residual impurities
 - Caused by interactions of graphene with underlying substrate
- Suspending graphene above its substrate reduces scattering\(^1\)

Mobility of graphene sample before (blue) and after (red) suspension
Fabricating Clean Graphene for FQHE Experiment

- Applied graphene on top of SiO₂/Si substrate
- Conductive layers deposited to make contacts
- Adjacent substrate layer removed with hydrofluoric acid
- Sample placed in alcohol to remove impurities
- These steps optimize graphene purity

Example of experimental apparatus
Results
Observing the $v=\frac{1}{3}$ State

- Only $v=1$ state for $B = 2.5$ T
- At $B = 9$ T, state $v=1/3$ starts to appear (A)
Observing the $v=\frac{1}{3}$ State

- Only $v=1$ state for $B = 2,5$ T
- At $B = 9$ T, state $v=1/3$ starts to appear (A)
- At $B = 12,13,14$ T the state $v=1/3$ is clear.
Observing Two More FQH States

- **Blue**: G is decreasing with n
- **Red**: G is increasing with n
- FQH states are found in light blue regions

\[
\frac{dn}{dB} = \frac{\nu}{\phi}
\]
Observing Two More FQH States

- **Blue**: G is decreasing with n
- **Red**: G is increasing with n
- FQH states are found in light blue regions

- Below is a table for the found fractional states

<table>
<thead>
<tr>
<th></th>
<th>ν</th>
<th>$G \ (e^2/h)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.30 ± 0.02</td>
<td>0.32 ± 0.02</td>
</tr>
<tr>
<td>B</td>
<td>0.46 ± 0.02</td>
<td>0.54 ± 0.02</td>
</tr>
<tr>
<td>C</td>
<td>0.68 ± 0.05</td>
<td>0.94 ± 0.02</td>
</tr>
</tbody>
</table>
T-dependence of the Conductance

Higher temperatures wash out FQH states.
Paper Summary

- Observation of FQHE in graphene was of great interest since it would provide a probe into its interesting e-e phenomena. However, previous attempts had failed due to impure samples.

- Authors constructed ultraclean suspended graphene samples and were able to observe FQH factors at $\nu = 1/3$ and $\nu = 2/3$.

- Authors were also able to get a resistivity profile (as a function of T) of graphene’s insulating state.
Criticism
Criticism

- Unclear plots (odd axes, poorly balanced dG/dn gradient)
- Discussion about insulating state of graphene left vague
- Some statements left unexplained (e.g. QAHE not mentioned later)
- No true conclusion (ends with results, no future approaches)
Impact
Impact of Paper: Citation Evaluation

- Paper was highly cited, with over 700 citations since 2009
- It received a Field-Weighted Citation Impact of 10.79
- Most citations were in physics, with the expected fields following
Impact of Paper: Review Paper

- Review articles cited this paper the most within its most cited year (2010-2012)

Electronic transport in two-dimensional graphene

S. Das Sarma

Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
Impact of Paper: Continuation of Research

- Paper on rigorous measurement for $\nu = 1/3$ released by the same group later

Measurement of the $\nu = 1/3$ fractional quantum Hall energy gap in suspended graphene

Fereshte Ghahari, Yue Zhao, Paul Cadden-Zimansky, Kirill Bolotin* and Philip Kim

Department of Physics, Columbia University, New York, New York 10027

We report on magnetotransport measurements of multi-terminal suspended graphene devices. Fully developed integer quantum Hall states appear in magnetic fields as low as 2 T. At higher fields the formation of longitudinal resistance minima and transverse resistance plateaus are seen corresponding to fractional quantum Hall states, most strongly for $\nu = 1/3$. By measuring the temperature dependence of these resistance minima, the energy gap for the 1/3 fractional state in graphene is determined to be at \sim20 K at 14 T.

PACS numbers: 73.63.-b, 73.22.-f, 73.43.-f
Impact of Paper: Recent Paper of Interest

- Paper on observation of anyon braiding statistics

Direct observation of anyonic braiding statistics

J. Nakamura1,2, S. Liang1,2, G. C. Gardner1,2,3 and M. J. Manfra1,2,3,4,5

Anyons are quasiparticles that, unlike fermions and bosons, show fractional statistics when two of them are exchanged. Here, we report the experimental observation of anyonic braiding statistics for the $\nu = 1/3$ fractional quantum Hall state by using an electronic Fabry-Perot interferometer. Strong Aharonov-Bohm interference of the edge mode is punctuated by discrete phase