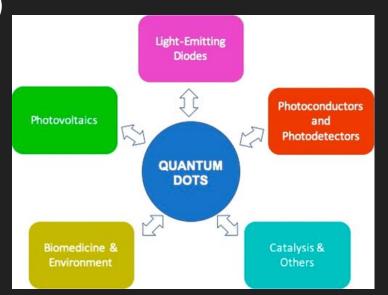

Small Carbon Quantum Dots, Large Photosynthesis Enhancement⁴

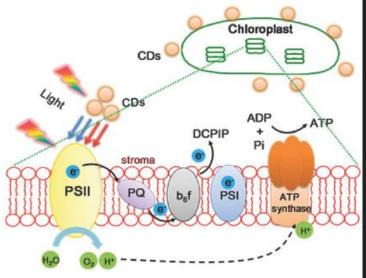
Group 5: Forbes, D., Gibson, J., Gliozzi, J. Gold, M. Harris, I.


▲ Y. Gong and J. Zhao, Small Carbon Quantum Dots, Large Photosynthesis Enhancement, J. Agric. Food Chem. 66, 9159 (2018).

Introduction

Introduction
Background and Results Argument Analysis Citation Analysis Conclusions

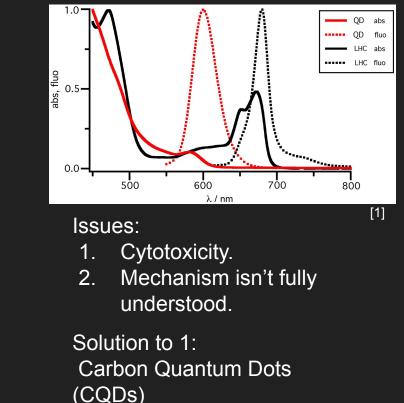
The Case for Rare-Earth doped Carbon Quantum Dots (RE-CQDs)


- Argument for further investigation into RE-CQDs and photosynthesis enhancement
- Why photosynthesis enhancement?
- RE-CQDs could lead to nanofertilizers and new class of synthetic materials that can "grow."

Mônica A. Cotta ACS Applied Nano Materials 2020 3 (6), 4920-4924

Previous Work with Photosynthesis Enhancement and RE-CQDs

- The authors present other groups' research as support:
 - CQDs bind with isolated chloroplast (2014)
 - Rare-earth elements augment photosynthesis (2001)
 - RE-CQDs have desirable properties


Advanced Functional Materials. Li. W et al. (2018)

Background and Results

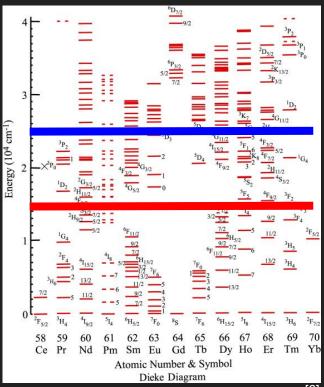
Quantum dots (QD) for nonradiative energy transfer

- CdSe QD as energy donors to LHC-IIb¹
 - Fluorescence resonance energy transfer (FRET).
 - Helps fill the 'green gap'
- 3x increase in excitations in LHCs vs. control²
- Maximum enhancement:³
 - Molar ratio LHCII:QD of 2.7:1.
- More recently w/ Si-based QD⁴

[1] Erker, W., et al. *J. Lumin* (2010).
 [2] Nabiev, I., et al. *Agnew. Chem.* (2010).
 [3] Liu, X., et al. *Shengwu Wuli Xuebao* (2013).
 [4] Li, Y., et al. *Nanoscale* (2020).

Rare-earth (RE) elements and quantum efficiency

- RE doped into solids \rightarrow long lived, optical transitions
- Complete 5*s*²5*p*⁶ orbitals shield the outermost 4*f* ⁿ orbital from external fields.


optoelectronics, signal

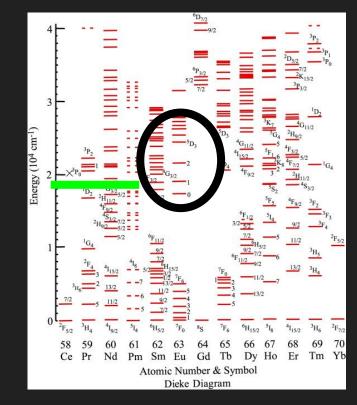
processing

• RE solid state devices:

quantum memory, quantum networking

• Ongoing work at UIUC!!! Goldschmidt group⁵

Direct impact of REs on photosynthesis in vivo


- Tobacco seedlings⁷
 - \circ Accelerated photosynthesis \rightarrow stimulated seedling growth
 - Optimum concentration due to toxicity
- Green Algae⁸
 - \circ Low intensity: 300% increase in photosynthetic rate \rightarrow 36% enhancement in growth
 - Found an overall increase in chlorophyll.
- Corn⁹ and many other agricultural goods, dating back to the 60s.¹⁰

[7] Chen, W. J., et al. *Biol. Trace Elem. Res.* (2001).
[8] Řezanka, T., et al., *Photosynth Res* (2016).
[9] Cui, W., et al. *J. Rare Earths* (2019).
[10] Kotelnikova, A., et al. *Environ. Saf.* (2020).

Introduction
Background and Results Argument Analysis Citation Analysis Conclusions

RE-CQDs for improved photosynthesis

- Proposed work: Eu doped CQDs
 - Transitions in the green (speculative)
 - Chelation of Eu-CQDs demonstrated¹¹
- Eu CQDs for Hg detection in water¹²
 - Dual fluorescence
 - Cool but not really relevant

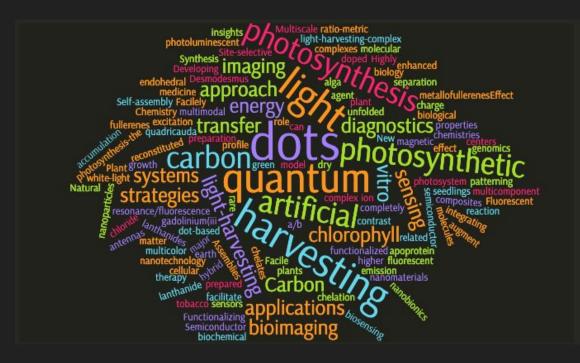
Argument Analysis

Argument Structure

- The conclusion is a hypothesis motivating future experiments
- Motivation:
 - Prior studies showing how carbon nanotubes improve photosynthesis
 - Semiconductor CQDs improved energy transfer in light harvesting complexes, but are toxic
- Narrowing the range of CQDs:
 - Many prior studies of heteroatoms (lattice substitutes)
 - Few on CQDs doped with rare-earth chelates
 - Rare-earths by themselves increase photosynthesis
 - Europium CQDs promising

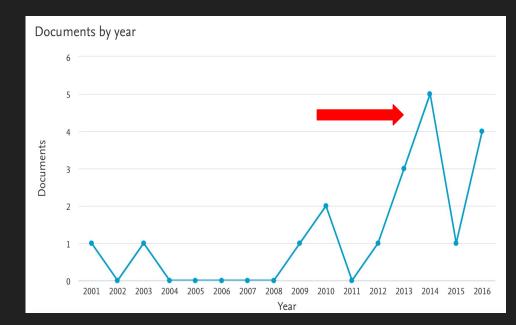
Critique of Argument Validity

- Logical flow of motivating RE-CQDs and narrowing down to Eu is valid
- Citations of detailed experimental papers
- I would add citations for two claims:
 - One mentions author but does not include citation
 - Another makes claim about prior studies of RE but does not cite studies


Critique of Argument Validity, cont.

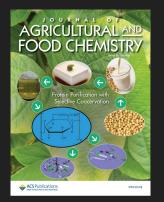
- Needs discussion of CQD's themselves
 - Can at least reference literature

Citation Analysis


Citation Analysis: Pre-Paper

• Interdisciplinary Field: 17 total references

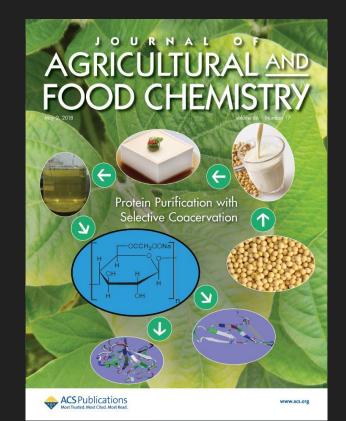
Citation Analysis: Pre-Paper


- Interdisciplinary Field: 17 total references
- Activity clustered around last 10 years

Introduction Background and Results Argument Analysis Citation Analysis Conclusions

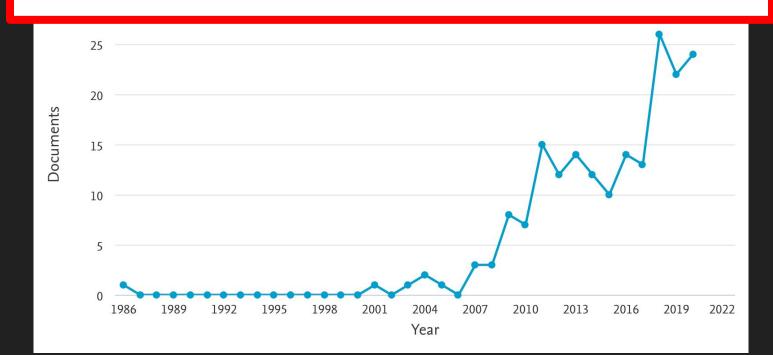
Citation Analysis: Pre-Paper

- Interdisciplinary Field: 17 total references
- Activity clustered around last 5 years
- Variety of Journals



nature mater	un all consideration
Photovoltaics bent on success	
	OVER ELECTRIQUES Superconductivity systematic Energy STORAGE
	Bectoremail a capacitors DRUG DELNERY Primmation averted

Citation Analysis: Post-Paper


- Few citations: 7-9
 - Relatively recent paper (published 2018)
 - Survey-style, No novel results
 - Niche intersection of fields
 - Authors early in career or unestablished
- Small but growing topic

Introduction
Background and Results Argument Analysis
Citation Analysis Conclusions

Citation Analysis: Post-Paper

TITLE-ABS-KEY (quantum AND dot AND photosynthesis)

Conclusions

Main Takeaway from article

- QDs connect to plants' LHC and aid in energy transfer
- Doping QDs with carbon to make CQDs is more plant-friendly
- CQDs doped with rare earth elements (RE-CQDs) make photosynthesis even more efficient due to elements' properties

What's Next in this new field?

- Europium doped CQDs are stable and have high fluorescence quantum efficiency
- These QDs have emission peaks that overlap with what is available to chloroplasts and could hence use chloroplasts as energy donors
- The effect of RE-CQDs on plant photosynthetic physiology and biochemistry must also be studied

What is possible with these next steps?

- We could develop a better understanding of this technology's effect on the environment
- Seeing how RE-CQDs work with chloroplasts could lead to developing synthetic materials with natural growing and repairing capabilities
- This type of research could guide us towards more eco-friendly sources of obtaining energy!

Questions