Fast Rotating Relativistic Stars: Spectra and Stability without Approximation¹

Presented by:

Ian Cordeiro, Sam Cross, David Diaz, Xiaochuan Ding, and John Floyd

Department of Physics • University of Illinois at Urbana-Champaign

PHYS 596, December 4, 2020

¹C. J. Krüger and K. D. Kokkotas, "Fast rotating relativistic stars: Spectra and stability without approximation," Phys. Rev.Lett., vol. 125, p. 111106, Sep 2020.

Ι	What is a Neutron Star and Why is it special?
Background & Motivation	Characteristics of Neutron Stars (very small, very dense, and spin very fast)
Methods	Why do we care? Because neutron stars are <i>stellar</i> sources of gravitational radiation
Results	Statute for a function LIGO! Observed a neutron star merger (Abbott, B. P.; et al., Physical Review Letters. 119 (16): 161101)
Critiques Conclusion & Questions	Are there other times in a neutron stars life when we might look for gravitational radiation? Yes! oscillations and instabilities.

A Brief History of Oscillations and Instabilities in Neutron Stars

Background & Motivation

Oscillations and instabilities were first looked at by Kip Thorne et al. in the 1960s (K. S. Thorne and A. Campolattaro, Astrophys. J. 149, 591 (1967); K. S. Thorne, Astrophys. J. 158, 1 (1969).)

Methods

Results

Critiques

Conclusion & Questions Later on, <u>C</u>handrasekhar, <u>F</u>riedman, and <u>S</u>chutz fleshed out the secular <u>CFS</u> instability (a *stellar* source of gravitational radiation)

(S. Chandrasekhar, Phys. Rev. Lett. 24, 611 (1970); J. L. Friedman and B. F. Schutz, Astrophys. J. 199, L157 (1975); J. L. Friedman and B. F. Schutz, Astrophys. J. 222, 281 (1978).)

What is CFS instability? When a star becomes unstable to gravitational radiation as a result of counter-rotating perturbations in its oscillation spectrum

Ι	What does this paper do?
Background & Motivation	This paper proposes onset values of the CFS instability - focus is on quadrupolar f-modes of neutron stars with relatively high spin values ($\Omega \ge 0.8\Omega_K$)
Methods Results	- these conditions are likely to occur in the post merger phase This paper also presents asteroseismological relations
Critiques	 - allows observers to place constraints on the mass and radius of the neutron star such by observing the ℓ= m =2 f-modes - can also constrain the equation of state
Conclusion & Questions	AND it does it all without the Cowling or Slow Rotating Star Approx.

Ι	Methods - Einstein's Field Equations
Background & Motivation	Einstein's Field Equations (EFEs): - Relate the geometry of space-time to the distribution of matter and energy.
Methods	- non-linear, coupled, partial differential equations
Results	- Requires assumptions to solve for exactly - Example Solution: Tolman-Oppenheimer-Volkoff Eqn: $\frac{dP}{dr} = -\frac{Gm}{r^2}\rho\left(1 + \frac{P}{\rho c^2}\right)\left(1 + \frac{4\pi r^3 P}{mc^2}\right)\left(1 - \frac{2Gm}{rc^2}\right)^{-1}$
Critiques	Rotating Neutron Star (RNS) Code: Prewritten code which takes in <i>Equations of State</i> and assumptions and returns bulk parameters from EFEs (ie Ω , M, R, σ ,)
Conclusion & Questions	This Paper's Assumptions: 1. The neutron star is a perfect fluid (i.e. has 0 viscosity) 2. Temperature of the star is 0. Image Taken From:

https://wtamu.edu/~cbaird/sq/2015/06/09/does-the-influence-of-gravity-extend-out-forever/

Methods - Polytropic Equations of State (EoS)

Background & Motivation

Methods

Results

Critiques

Conclusion & Questions Thermodynamic EoS: 1. $PV = k_B NT$ (Ideal Gas Law) 2. $(P + \frac{a}{V_m^2})(V_m - b) = k_B NT$ (Van der Waals Equation) What are **Polytropic** EoS? - A nuclear equation of state has state variables such as the following: $f(P, T, R, \rho, \xi, n, Y_{\rho}, ...) = 0$ - Neutron star EoS's assume dependence on only density/energy density and pressure. - Can be an arbitrary equation or, usually, a polytropic equations. α is set to [0.6849, 0.7463, and 1] $P = K \rho^{\alpha}$

M. A. Resco, A. Cruz-Dombriz, F. Llanes-Estrada, and V. Z. Castrillo, "On neutron stars in \$f(r)\$ theories: Small radii,large masses and large energy emitted in a merger,"Physics of the Dark Universe, vol. 13, pp. 147–161, 2016.

Methods - Realistic Equations of State (EoS)

https://n3as.berkeley.edu/p/can-gravitational-waves-reveal-phase-transitions-in-the-cores-of-neutron-stars/

What are Realistic EoS?

- Realistically, EoS should incorporate interactions between particles.

- This becomes more important at higher densities.

- These EoS are still ONLY dependent on pressure and density.

The Realistic EoS in this Paper:

APR4 / WFF1 / SLy: Assumes particle makeup is p, n, e, and muons.

H4: Assumes particle makeup is p, n, e, muons, and hyperons.

Results: CFS Instability in the Inertial Frame Background & Motivation The data shows sequences (21 total: 3 per EOS • 1.5 with 3 polytropic and 4 realistic) of constant central energy density. Methods Least squares fitting: • Stable branch 1.0 $\frac{\sigma_i}{\sigma_0} = 1 + a_1 \left(\frac{\Omega}{\sigma_0}\right) + a_2 \left(\frac{\Omega}{\sigma_0}\right)^2$ σ_i / σ_0 Potentially unstable branch Results 0.5 EOS APR4 Potentially unstable branch RMSE = 0.024• EOS H4 EOS SLy Critiques EOS WFF1 Stable branch RMSE = 0.0480.0• polytropic EOS quadratic fit CFS CFS instability presents itself in the unstable • -0.5 L Conclusion & branch at $\Omega \approx 3.4 \sigma_0$. 2 3 1 Questions Ω / σ_0

Potentially unstable branch

0.8

1.0

Stable branch

0.6

Ι	Results: Cowling App	proximation
Background & Motivation Methods	 The data shows lines of constant Ω for the potentially unstable branch. Least squares fitting: 	$4 \begin{bmatrix} \bullet & EOS & APR4 \\ \bullet & EOS & H4 \\ \bullet & EOS & SLy \\ \bullet & EOS & WFF1 \\ \bullet & polytropic & EOS \end{bmatrix} = 4$
Results	$\hat{\sigma}_i = (c_1 + c_2 \Omega + c_3 \Omega^2) + (d_1 + d_2 \Omega + d_3 \Omega^2)\eta$ where η is a function of M and R.	$\frac{2}{10} = \frac{12}{10}$
Critiques	 CFS instability appears to occur more readily in stars with low effective compactness. However, their rotations are considerably closer to Ω_k. Although this includes more significant 	CFS = 20
Questions	approximations, this does not depend on σ_0 .	effective compactness η

General Critiques

Background & Motivation

- Little discussion about possible sources of error
- Not much motivation for the form of fitting equations and the significance of parameters

• Assumptions not always explicitly stated

Results

Methods

Critiques

Conclusion & Questions • Not much qualitative or physical discussion of results

Ι	Criticisms on Procedure and Results
ackground & Motivation	• Fit parameters cut out entirely to yield a better fit with little explanation
Methods Results	• Fit equations taken in different frames (inertial and comoving), with little reasoning
Critiques onclusion & Questions	 Title of the paper claims to make no assumptions but assumes that the temperature of the star is negligible, and the star's composition is a perfect fluid

B

C

Ι	B	rief overview of Citation	13 IS
Background & Motivation	•	Published on 11 September 2020 (only a couple months old!)	Fast Rotating Relativistic Stars: Spectra and Stability without Approximation (2020) Physical Review Letters, 125(11), 111106,
Methods	•	Both papers which cited the article were	Scopus Metrics
Results		collaborators	2 Citations Total number of times this document has been cited in Scopus.
Critiques	•	Little social media presence (1 tweet) and readers (6)	PlumX Metrics @ see details
Conclusion & Questions	•	Difficult to know impact of the article	Mendeley - Readers: 6 Twitter - Tweets: 1

Ba Ν

Ι	Future Prospects	14
Background & Motivation	 Krüger and Kokkotas only considered EOSs for the ℓ = m = 2 f-mode. Extend to higher multipole moments (ℓ > 2) - similar fitting formulas are already derivable¹ Analyze lower p = α and w modes 	600
Methods	maryze lower p-, g- and w-modes	
Results	• Extend to differentially rotating neutron stars (e.g. rotation differs at different points on star), and hot EOSs	
Critiques	• Future research could elucidate more on nascent neutron stars, mergers, and gravitational waves	
Conclusion & Questions		
	¹ D. Doneva and K. D. Kokkotas, Phys. Rev. D 92, 124004 (2015)	

