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Requirements for a Quantum Measurement
● Quantum states, observables, operators, the environment
● Quantum measurement is statistical (repeatable measurements, large in number)
● Often need very well isolated systems (High Q; low energy loss) 
● Decoherence rates must outlive measurement times 

Wigner Function wiki

observer quantum system reconstructing the quantum information 



Repeatable Quantum Measurements

● What quantum behavior can we observe and how do we do that?
● Quantum non-demolition (QND) measurement of quantum state fluctuations

○ QND preserves observable uncertainty and evolution; repeatable

● Quantum jumps have been observed in trapped massive particles, but what about light 
quanta? 

McIntyre, David H., et al. Quantum Mechanics. Pearson, 2016.



Measuring Quantum Jumps in Light
● Quantum jumps in photon number
● QND probes are Rb atoms in Rydberg states (dipole polarizability)

○ Detectable light shifts of single-photon resolution 
● High Q cavity coupled to qubit (atom) 

○ Enables measuring n(t) 
○ Photon exchange (qubit and cavity)

QMHO-stackoverflowA. Mortezapour,Quantum Inf Process 19, 136 (2020). 



Experimental Set-up for Detecting Quantum Jumps

● B: box containing rubidium atoms, 
prepared in state |g⟩

● R1, R2: Ramsey cavities

● S: classical microwave source

● C: photon box, a cavity that hosts the 
photons to be detected

● D: state selective field ionization detector

● R1-C-R2 interferometric arrangement 
cooled to 0.8K and shielded from thermal 
radiation

Gleyzes, S., Kuhr, S., Guerlin, C. et al. Quantum jumps of light recording 
the birth and death of a photon in a cavity. Nature 446, 297–300 
(2007).



Experiment 1: Birth, life and death of a photon

1. Rubidium atoms in the circular 
Rydberg state |g (n=50) are 
prepared and emitted from the 
box B. Travel along the blue 
axis at 250 ms-1.

Gleyzes, S., Kuhr, S., Guerlin, C. et al. Quantum jumps of light recording 
the birth and death of a photon in a cavity. Nature 446, 297–300 
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Experiment 1: Birth, life and death of a photon

1. Rubidium atoms in the circular 
Rydberg state |g (n=50) are 
prepared and emitted from the 
box B. Travel along the blue 
axis at 250 ms-1.

1. In R1, atoms undergo a 
change to a superposition 
state of |e (n=51) and |g , Gleyzes, S., Kuhr, S., Guerlin, C. et al. Quantum jumps of light recording 

the birth and death of a photon in a cavity. Nature 446, 297–300 
(2007).
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Experiment 1: Birth, life and death of a photon

3. Interaction of the atom with   
cavity C. Different photon state 
in cavity → different 
interaction. Atomic state gains 
a phase shift              , become
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3. In R2, the Ramsey pulse 
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5. Detector counts the number of 
atoms
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Experiment 1: How does it detect quantum jumps?

Detecting quantum jumps

● Measuring the states of atoms →  infer the photonic state
● If |g → |0 , if |e → |1
● Obtain photon numbers as a function of time

Is it perfect?

● No! Conditional probability: P(g|1) = 13%, P(e|0) = 9%
● Majority vote involving 7 more atoms at any time
● Reduced probabilities: P(g|1) = 0.14%, P(e|0) = 0.025%



Experiment 2: Decay of the |1 state

● Just some additional steps 
compared to experiment 1

1. Photonic state initialized to |0
by using ~10 atoms in |g , 
tuned to resonance with 
cavity mode. No photon left in 
C.

Gleyzes, S., Kuhr, S., Guerlin, C. et al. Quantum jumps of light recording 
the birth and death of a photon in a cavity. Nature 446, 297–300 
(2007).



Experiment 2: Decay of the |1 state

2. 1 rubidium atom in state |e
sent to C. Interaction time 
adjusted such that it exits C in 
|g and leaves C in |1

2. Same as the steps in 
experiment 1

Gleyzes, S., Kuhr, S., Guerlin, C. et al. Quantum jumps of light recording 
the birth and death of a photon in a cavity. Nature 446, 297–300 
(2007).



Data and Results - Field Fluctuations

● 2.5 s experiment of 2241 counts
● Creation event at t = 1.054 s

○ 0.476 s lifetime

● Background average occupation    
n0 = 0.063 ± 0.005                           
nt = 0.049 ± 0.004

● Characterize atom emission heating 
as 10-4 per atom per second



Data and Results - Single Photon State Decay

● Progressive averaging reveals exponential in 
ensemble decay evolution

Time Constants

● First-quantum-jump histograms



Critiques

● Multiple readings required to find critical details.
● Claiming to record the birth and death of photons is 

contrived when using a polling method.
● Setup measures n=1 and n!=1.
● Setup is not precise enough to distinguish expected 

stimulated decay contributions in experiment 2.
○ T1,measured = 0.097 土 0.005s; T1,expected = 0.102 土

0.004s
○ What do the error bars mean?

● Time between atomic detections is random.
○ Pmeasurement = 0.063

“In this experiment, the detection 
does not distinguish between 
[state 2] and [state 0].”
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Author’s Conclusions

● Successful quantum non-demolition measurements on photons
● Observation of cavity photon’s “birth” and “death”
● Demonstration of well-established ensemble behavior
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● “A spectacular recent achievement is the ability to perform quantum 'non-
demolition' experiments, in which photons in a microwave cavity can be 
monitored without destroying them, revealing the progressive collapse of the 
wavefunction under successive measurements.” (R. J. Schoelkopf & S. M. 
Girvin, 2008)

● “As their most spectacular sensing application, Rydberg atoms in vacuum 
have been employed as single-photon detectors for microwave photons in a 
cryogenic cavity in a series of experiments that was highlighted by the Nobel 
prize in physics in 2012.” (Degen et al., 2017)


