Lecture 1 Welcome to Phys 567 Geometry & Topology in Modern Electronic Structure Theory

1) Understand the four dontrons of group thy in Solid state physics 2) Develop took to analyze research papers on topological materials

3) Learn to apply Berry phase techniques electronic properties of solids	00	lyse
Rough guide to topics.		
(1) Space group Synnetires		
3 Berry phases & Wonnier functions 3 Band topology / topological materials		

4) Topology & quantum geometry"

course mebsite: courses. Minors edu / phys 567/fa 2025 course componentsi 5 HWs Final presentation Office Hows TBD I Review/Introduction to group theory Useful references: Serre "Linear representations of Finite Groups" · Dresselhous "Application of Group theory

· Bradley & Cracknell "Mothematical Theory of Symmetry in Solids" Starting point H= 2m + V(x)+... Schrödiger equation HIY>=EIY> X-) X' 14>-714'>
p-) p'

symmetries; transformations that take
H-)H'=H

to the Physics of Solids"

This course: transformations of space R-3x3 matrix rotation or reflection えつ メニスマナイ p-> p'= Rx 9 - frontation Some enturisher facts

(1) I can always do nothy x-7x "identity transformation"

(2) I can always undo a transformation = transformations

have inverses

3) IP I have two trousformations, I gan compose them to get 4 third

Define aset 6 18 a group of

There is an operation of product) such that 9_1GG 9_2GG then 9_1g_2GG 9_2GG $9_1g_2g_3$ g_2GG (associative)

2) there exists EGG such that
E·9=9·E=9 for all geG

3) If go 6 then there exits g 66 9.5-1,9-1.9 = E Examples of groups: (1) Unitary operators on (d-dimensional)
Hilbert space -Brang operationi Matrix meltiplishin - E = dxd identity matrix - Inverse - hemition conjugate

(B)

The group of rotations of 3d space

50(3)

Special of orthogonal

det = I transposes inverse

3 Translations in 35: 1R3
-elements - vectors $\vec{v} \in \mathbb{R}^3$ · binary operation = vector addition
· identity \hat{o}

Given a group 6, we can consider subsets HS6 a special End of subset is those where His itself a group = "subgroups" H=G HEG is a Subgroup of; ·EGH . His dosed under .; hihzeH >> hihzeH . H is closed under taking inverses heH=> h&H

Example: SO(3) notation group pick on axis ñ

{all rotations about ñ? C SO(3)

50(2) < 50(3)2d notation grap (including & itself) Translation group IR3= {(x, Y, Z) | x, Y, ZGR} H<G - Hisa paper subgroup 17 of G and Pick 3 mearly independent vectors H&G $\bar{t}_1, \bar{t}_0, \bar{t}_3$ T= {1, t, + n, t, + n, t, | m, n, n, n e Z5 T<1R3 Subgroups of this formare known as Bravais lattices

on subsproup of G

We can the Subgroupe H to learn about the Structure of G we can define, for each 306, a Gren HSG right coset Hg = { h.g | ho H} Important fact; every 9'66 15 11 one and only one

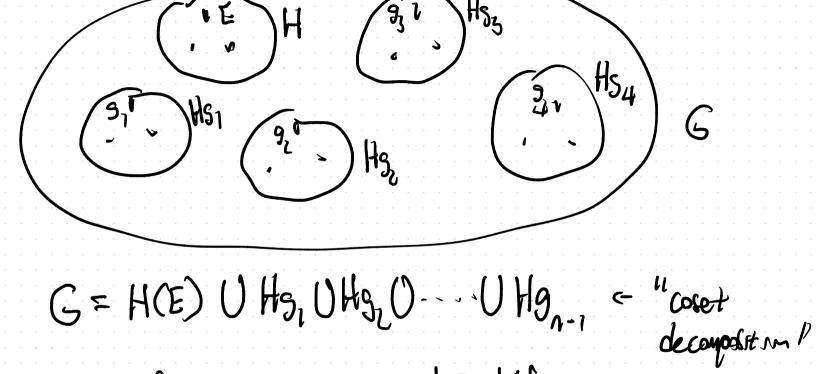
Proof: First: show that every ge6 18 19 qt least one cotet, Second: show that It Is in only one cotet

9= 12.92

9=11.31

hi-hi-gi=hi-gz

hil. hr E H



number of right cosets 1= [G:H] rudex of Hin G dways chow [E, Si, -9, .] - "coset representatives"

H9,= Ehg, [h6H] = {h(h'9) | heH}

tobe E coset representatives are not unique