Welcome to the Fall 2020 web page for PHYS561

  • Mediaspace Link)
  • Zoom link for lectures)
  • Physics 561 Course Syllabus

    Fall 2020

    T, Th 11:00-12:20 Room 276 Loomis

    Instructor: P. Phillips, Rm. 2121 ESB (online)

    Textbook: P. Phillips, Advanced Solid State Physics, 2nd Edition

    Cambridge University Press, 2017

    Office Hours:

    Philip Phillips (ONLINE) : W: 1:00-2:30

    Bikash Padhi (TBD:ONLINE)

    A. Many-Body Methods

    1. Introduction: Spontaneous Symmetry Breaking
    2. Free-electron Gas
    3. Tight-binding
    4. Born-Oppenheimer Approximation
    5. 2nd Quantization and Field Operators
    6. Hartree States/Hartree-Fock Approximation/Koopmans Theorem
    7. Interacting Electron Gas
    8. Beyond H.F./Wigner Interpolation

    B. General Many-Body Phenomena

    1. Phenomenology on Local Magnetic Moments in Metals
    2. Green Functions
    3. Anderson Model
    4. Mean Field Solution Using Equations of Motion
    5. Relation to Kondo Model
    6. Kondo problem, scaling and all that
    7. Phase Shifts Lecture Notes
    8. Handouts (see Asymptotic Freedom/Politzer)
    9. Handouts (see Asymptotic Freedom/Gross/Wilzcek)
    10. Plasma Oscillations
    11. Handouts (see Bohm-Pines reference to Collective Coordinates)
    12. RPA
    13. Dielectric Response Function()
    14. Stopping Power of a Plasma
    15. Phonons and e-phonon Interaction
    16. Ultrasonic Attenuation
    17. Electrical Conduction (Drude Formula,
    18. Boltzmann Transport Equation, Hydrodynamic Limit, Sound Propagation
    19. Bosonization of Electron Gas
    20. Luttinger liquids
    21. Fermi Liquid Theory,RG for the Fermi surface, Luttinger's non-theorem
    22. Handouts (see Polchinski's paper on RG for Fermi surfaces)

    C. Superconductivity

    1. General Properties of Type I and Type II Superconductors
    2. London Equations
    3. Handouts (see Weinberg's paper on superconductivity)
    4. Handouts (see Fractional Electro-magnetism)
    5. Energy Gap, Penetation Depth, Ultrasonic Attenuation
    6. NMR (Hebel-Slichter Peak)
    7. BCS Model
      a. Phonon-induced Cooper Pair
      b. Global Pair State
      c. Normal Ground State Instability
      d. Gap Equation
      e. Quasi-particle Excitations
      f. Thermodynamics
      g. Nuclear Spin-lattice Relaxation

    D. Localization and Quantum Hall physics

    1. Anderson Localization
    2. Weak Localization
    3. Integer Quantum Hall Effect
    4. Topological Insulators
    5. Fractional Quantum Hall Effect

    E. Mott physics

    1. Mott insulators: Mottness

    2. Hubbard Model

    3. Antiferromagnetism

    4. Hatsugai-Khomoto Model

    F. Course Requirements

    1. Five Homework Sets (approximately) (1/3 of grade)
    2. Take-home midterm (1/3 of grade)
    3. Take-home Final (1/3 of grade)