12.4 Cooper pairs

in the time dornain is not always attractive. Electron repulsions and the phonon-mediated
attraction act on different time scales and hence pair-binding of electrons is possibie.
Let us evaluate the two-body scattering amplitude,

As = (P4cr| P351|Vae|pla| PZorg_)a (1239)
where
Ve= Y VikK - q)ahqaf‘._qakaak, (12.40)
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As discussed in Chapter 5, any two-body amplitude of this form separates into a difference
of direct and exchange Coulomb integrals. For a general momentum-dependent potential,
the direct and exchange terms will enter with different combinations of the momenta and
spin. For example, the exchange term will be of the form ¥ (py, p2) with ¢; = o3, whereas
the direct term will enter with no restriction on the spins and will depend on ¥ {p,, pa). Let
us assume that the net attractive potential is a constant of the form

-V, IAERF.Q| < fuwp,

Voo =
7] 0 |Aegq] > Ao

(12.41)
Because the potential is momentum-independent, the direct and exchange integrals are
equal, and the scattering amplitude vanishes when o; = o3. The only non-zero contribution
arises from o # o2. As a consequence, for a constant interaction, the scatiering amplitude
is non-zero only if the electrons are locked into a singlet state. In this case, phonons induce
anet attraction between electrons of opposite spin. The corresponding matrix element is of
the form

(Pat P3y Vel P13P2s) = —Vodp 4papstps (12.42)

for scattering in the vicinity of the Fermi surface. Two particles locked into a singlet state
will give rise to a gap at the Fermi level.

12.4 Cooper pairs

Consider now the somewhat artificial problem of a full Fermi sea containing N non-
interacting electrons with two additional interacting electrons outside the sea. As a result
of the Pauli exclusion principle, the momentum of the electrons outside the Fermi sea must
exceed pp. We take the potential of interaction to be the constant singlet pair potential
derived in the previous section, Eq. (12.42). The spin wavefunction is hence antisymmetric
with respect to spin. The corresponding spatial part must be symmetric to satisfy the overall
antisymmetry requirement. The eigenvalue equation for our subsystem of two particles is

2m

In general, the two-body wavefunction is a composite state

W(ry, ra; T, 42) = ¥r, rdxs(th, da), (12.44)

2
[—i (VE+ V) + V(i —r) — E} W(ry, ry; 1, b2) = 0. (12.43)
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where xs5(11, J2) represents the singlet spin state and y contains the spatial dependence,
For two particles, we can express the spatial wavefunction in terms of the relative coordinate,
r ==r; —ry, and a center of mass, R = (r; + 12}/2, as

¥ (r1, 1p) = p(r)edRM, (12.45)
Likewise, the momenta of interest are the center of mass, Q = py + pa, and the relative
momentum, q = (p; — pz)/2. We expand ¢ (r) in a Fourier series as
/ giler/h

pr)= ) ~——
27

in which the prime indicates that the restriction k > kg is restricted to all states whose
energy exceeds ep. Because k- r = k- ry — k - ry, we see that the pair state has momenta
(k, —k). Note, if k; + ky = 0, then the center-of-mass motion drops out of the problem.

We focus first on the Q = 0 solution. To this end, we define the Fourier components of
the interaction potential,

e, (12.46)

d - ]
Viae = f Fe O @), (12.47)
and introduce the center-of-mass Schrédinger equation
ﬁ2
(—ﬂvz + V(r)) o(r) = Ep(x), (12.48)

where p is the reduced mass, i = m/2. Substituting the Fourier representation of ¢ (),
multiplying by exp(—ik - r/k), and integrating, we obtain
(E —2a e = ) _ Vvt (12.49)
”
as our new eigenvalue equation. Here, e, = k?/2m. The matrix element Vi is equivalent
to ’
Ve = (k, —K Vel K, —K'). (12.50

A typical scattering process in ¥y is shown in Fig. 12.10.
If we now infroduce the approximation that

_ = kK> pr,
Piae = { 0, otherwise, (12.51)
the eigenvalue equation can be recast as
1
]. = “VG Z
ke E ~ e
=TT tE). (12.52)

This equation is satisfied as long as ¢ (E) = —1/Fp. The poles of ¢ (E) occur at E = 2¢y,
the total energy of the pair, which is bounded from below by 2ep. In a finite system, ¢
takes on discrete values because k is quantized. As E approaches 2¢; from below, ¢(E)
approaches --c0. Just above 2ey, ¢{E) is ~ 4-00. Forall E < 2eg, ¢(E) is negative. Hence,
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a bound state forms when ¢(E) crosses —1/¥, for E < 2¢p. The intersection of —1/F
with ¢(E) is illustrated graphically in Fig. 12.11. The existence of such a solution is the
Cooper (C1956) pair problem. To find the precise energy of the bound state, we convert the
sum in Eq. (12.52) to an integral,

! .
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by introducing the density of states, N (x). If we assurme that N(x) does not change sig-
nificantly in the narrow range of integration, we can set N(x) == N{e¢p). Under these
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assumptions, the integral yields

2 | o3 (12.54)
- = In s .
VoV (er) € — £ + Hwp
which implies that
E 2 E
— =+l - =€ — —. 12.55
(EF 2" D) P ( VoN(eF>) T2 (1239

This linear equation can be solved immediately for the eigenenergy E:
B 2hewp exp (—2/FoN{er))
1 —exp (~2/VoN(er))

In the limit that 2 3> FyN{er), the exponential in the denominator can be expanded. The
pair-binding energy

E = 2¢p (12.56)

2
E ~2¢p — ZFLQJD exp (_VE}N_(GF)) (1257)

in the weak-coupling limit results. Either of these expressions indicates that the Cooper pair
is bound with an energy < Zer whenever ¥ is non-zero and positive. This is a profound
result. [t implies that two electrons directly below the Fermi surface can lower their energy
by being excited into a Cooper pair with momenturn (k, —K) just above the Fermi surface
provided that an attractive interaction of the form in Eq. (12.51) exists. This is known as
the Cooper instability.

Further, we can estimate how the pair-binding energy depends on the center of mass
of the Cooper pair. At the onset, we suspect that this quantity might scale as 0. We will
show that this is not the case. To proceed, we extend the pair-binding criterion to the case
in which Q # 0. For non-zero 0, the bare energy of the pair becomes €q40/2 + €_g+0/2-
Consequently, the pair-binding condition becomes

1
1=-W E . 12,58
’ o £~ €ara — €-gtop (1239

For small (J, we can rewrite Eq. (12.58) as

ep+upQ/f24-fuwp
= --VD/ Nieg)deg (12.59)
€]

FHUpQ/f2 E— 2‘5‘1 1

dropping terms of Q(Q%). The center-of-mass simply shifts the zero of the Fermi energy.
The new pair-binding energy,

2Fiwp
exp (2/VoN (e)) — 1’

E =2ep 4 Ove — (12.60)
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is a linear function of the center-of-mass momentum. Translation of the center of mass
strongly reduces the binding energy and could eventually break up the pair. To show this,
we set ef = 0 and evaluate the value of O at which the Cooper pair loses most of its binding
energy. We must then solve
_ 2hwp
exp (2/VoN(ep)) — 1
~ kpT:. (12.61)

Equivalently, @/# ~ kg T./hve ~ 10* cm™!, which is roughly the reciprocal of the Pippard
coherence length, € ~ 10™% cm. This is the effective radius of gyration of a Cooper pair, an
enormous distance when compared to interatomic spacings. Such a large coherence length
is a typical feature of phonon pairing mechanisms.

12.5 Fermiliquid theory

Of course, our problem is somewhat artificial in that we have ignored all interactions between
the electrons save for the pair just above the Fermi surface. It is certainly reasonabie to
expect the simple picture of the Cooper instability to break down once we consider repulsive
interactions among all of the electrons. That is, when clectrons are interacting, we cannot
a priori regard the non-interacting eigenstates as a valid description of our system (as we
have done in the Cooper problem). We then are led to the question, is the instability real?
We will answer this question by appealing to simple physical considerations arising from
the scattering of electrons near the Fermi surface and a more formal argument nvolving
the scaling of the full interacting Lagrangian. It is now well accepted that the normal state
of a metal is described by Landau—Fermi liquid theory. In this account, it is claimed that the
dominant effect of electron interactions in a metal is to renormalize the effective mass of the
electron. The observed shift is on the order of 10 to 50 percent. Another essential claim of
Fermi liquid theory is that there is a one-to-one correspondence between the excited states
of the normal state of a metal and those of a non-interacting electron gas. The elementary
excitations in Fermi liquid theory are called quasi-particles. A quasi-particle is a composite
particle with a lifetime. The lifetime stems from collisions with other quasi-particles. When
the lifetime () of a quasi-particle is infinite, the state with such a particle is an eigenstate
of the system. However, the minimum constraint that must hold for a quasi-particle state to
be an eigenstate of a system is that /it < &, where &, is the energy of the quasi-particle.
We will see below that as the energy of a quasi-particle approaches the Fermi level, its
lifetime goes to infinity. The stability of quasi-particles at the Fermi level is a crucial tenent
of Fermi liquid theory.

The vanishing of the scattering rate of electrons in the vicinity of the Fermi level can be
shown as follows. Consider a near T = 0 distribution in which all but one of the electrons
is below the Fermi surface. Let €] be the energy of the electron above the Fermi surface.
For an electron with this energy to scaiter, it must interact with some electron with energy
¢, < ¢¢. The Pauli exclusion principle requires that after the scattering event, the electrons
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To see this more clearly, we rewrite the relaxation rate as

647 . :
-l = 92 12 jonl? 2 (0) fA de n(e) (1 — n () (-”i—”)
(2 + A7)

T

> . (12.318)
(1 — A ReG)” + m2|HiP2p? (e)
which reduces to
o0 2 AZ
Tt oc] de (1 — 2 (e)) n (¢) £ j . (12.319)
A (1472 B 20)) 62 — A2

In deriving Eq. (12.319), we ignored the real part of the Green function as it serves no
relevant purpose as far as the convergence is concerned. This expression is completely
convergent at £2 = A2, In fact, because (1 + w2 |Hiy|? g2(0)) > 1, the integral does not
diverge over the complete integration range. Consequently, summing high-order terms in
the perturbation series results in a smearing of the peak in the relaxation rate immediately
below T¢.

12.15 Josephson tunneling

Consider two superconductors separated from one another by a thin insulating barrier.
Naively, we would expect no appreciable transport of charge between the two superconduc-
tors in the absence of an applied voltage, save possibly for single quasi-particle tunneling
through the insulating barrier. Josephson (J1962) showed that this naive picture is not cor-
rect. In particular, he proved that in the absence of an applied voltage for a sufficiently
thin barrier, Cooper pairs flow coherently between the two superconductors, thereby es-
tablishing a supercurrent through the barrier. Further, the transport of Cooper pairs across
the barrier does not result in the creation of quasi-particles in either superconductor. When
an applied voltage is present, the supercurrent oscillates with a well-defined period. The
essence of both of these effects, de and ac Josephson tunneling, rests in the phase coherence
that obtains in the superconducting state. ,

We focus first on the dc Josephson effect. Consider two superconductors separated by a
thin insulating barrier. Let Ay represent the Hamiltonian for single-particte tunneling across
the thin barrier. The specific form of this term is not essential here. The only important
feature is that At transfers only one electron at a time. We assume at the outset that there
is no voltage difference between the two superconductors, and hence they are at the same
cherical potential. We can derive the Josephson effect by making an analogy with electron
transport in a 1d periodic chain in the tight-binding approximation. In this approximation,
a single orbital is placed on each lattice site and a hopping term mediates transport among
nearest-neighbor sites. In such a system, no energy is required to transport an electron
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across m lattice sites. Likewise, it requires no energy to translate m Cooper pairs across the
barrier in the absence of an external voltage differential between the two superconductors.
Let Py, represent the many-body state when 2m Cooper pairs are transferred across the
barrier. The degeneracy of these states is split by the single-electron tunneling term, Hy.
Consequently, we expand the total state of our system as a linear combination

[Wp) = |) = 3 €2"8| ) (12.320)
over all such pair states. The phase ¢ plays the role of the wavevector k in the 1d periodic
tight-binding model. As we have established earlier, the particle number, 2, and the phase,
¢, are conjugate variables.

To compute the energy shift as a result of the tunneling processes, we employ perturbation
theory. The first-order term, {¢|Fr]¢)}, vanishes identically because ¢ is a sum of all pair
states and Hr is a one-body operator. Consequently, the first non-zero term appears in
second order. Let

HY = Hrp—th (12.321)

represent the tunneling operator at second order with £y the energy of the intermediate
state, |J}. The second-order correction to the energy,

Eg = (QIH19)

— Z eZi(b(m—m’) (2??1’|ﬁ-§2) |2m)

=3 (eZi«f’(zmﬁT‘sz(m + 1)) + e 2m HP 120n — 1))) . (12322)
is a sum of all matrix elements that differ by a single Cooper pair. We have assumed
that {¢|¢) = 1. To simplify this expression, we note that the energy of the intermediate
state involves a particle~hole excitation, and hence E; must exceed E by at least 2A.
Consequently, E — E| < 0. If we regard the tunneling term to be purely real, we simplify
the energy shift to

h
Ey= —7" cos2¢, ©(12.323)
with
B =43 [P R0+ 1)) (12.324)

m

The minus sign in the energy shift arises from the sign of the excitation energy. From the
Hamilton equation, Eq. {12.170), it is clear that if the energy shift depends on the phase,
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then the pair number fluctuates on either side of the barrier. This fluctuation is due entirely
to the tunneling processes. We calculate the pair current directly,

d(2m)
e

I=2e

dE .
23(@—;‘;) = JeJy sin2¢, (12.325)

by differentiating the energy shift with respect to the phase. Consequently, in the absence
of an applied voltage, a dc supercurrent flows across the barrier. The value of the current
ranges from -2eJy to 2eJp. A supercurrent of this form was first observed by Anderson and
Rowell (AR1963). If a potential difference ¥ exists across the barrier, then a term of the
form 2m¥ must be added to the Hamiltonian. Consequently, from Hamilton’s equations,
Eq. (12.170), the phase fluctuates in time according to

408 _ ep, (12.326)

de
Together, these two equations, Eq. (12.325) and Eq. (12.326), completely determine the
behavior of the supercurrent across the barrier. To illustrate, consider the simplest case in
which the voltage ¥ is a constant in time. In this case, the phase ¢ varies linearly with time
and, as a consequence, the current oscillates as sin{2e¥¢//). Hence, an alternating current

flows with a frequency of 2eV /.

Summary

We have shown that the pairing hypothesis of BCS is sufficient to account for all relevant
experimental observables of low-temperature superconductors. In fact the BCS pairing
mechanism is the only account available currently to describe the transition to a supercon-
ducting state. In contrast to low-7;, materials, superconductivity in the cuprates originates
from doping an insulator. Further, the insulator possesses a partially-filled band and hence
falls into the class of Mott insulators in which an absence of transport originates from strong
electron repulsions. Consequently, we know a priori that we are not justified in starting
from Fermi liquid theory to describe even the normal state properties. Simply stated, the
deep phenomenology of the cuprates lies in the physics of doped Mott insulators. Whether a
theory as succinct and crystal clear as the BCS account can be formulated for such systems
remains to be seen.

Problems

12.1 Within the Ginsburg-Landau phenomenological approach, determine the form of
the free energy density when a magnetic field is present. Show that the free energy
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difference between the superconducting and normal states is given by
H(T)
87

12.2 Writing the Ginsburg—Landau wavefunction as ¥ (r} = /n{r)e?®, show that the
current density in terms of the variables & and n(r) is given by

Fs— Fu= (12.327)

i= i«ﬁ« (V@ o e_A_) n(r). {12.328)
m ch

Now assume that in the bulk of a material, the current density vanishes. As a conse-
quence, V8 = eA. Integrate both sides of this expression around a closed loop in a
superconducting ring and show that the resultant magnetic flux enclosed is quantized.
‘What is the correct value of e for a superconductor?

12.3 Use second-order perturbation theory directly to show that the electron—phonon
interaction is negative and given by the second term in Eq. (12.34).

12.4 Redo the Cooper pair instability calculation for triplet pairing between the electrons.

12.5 Evaluate {#*) for a singlet Cooper pair.

12.6 In the problem of the instability of the superconducting state in the presence of the
BCS pairing interaction, determine the form of the growth rate of the pair amplitude
as T — T..

12.7 Evaluate the commutator [b;, b}:], where the s are the Cooper pair annihilation
operators. What does the lack of commutativity of the Cooper pair creation and
annihilation operators mean?

12.8 Calculate the average number of particles in a superconductor. Let }W) represent the
BCS pair state. Show that the average value of the number operator, N, is given by

(WINIY) = (8] ) af,ar|¥) =2 ul (12.329)
ko k

in the pair state. Also evaluate the fluctation {(¥ — (N})?). You should obtain a
simple result involving u;, and v, only. For what special value of u; and vy is the
fluctnation maximized? Interpret your result.

12.9 So far we have ignored any spatial inhomogeneities in the gap. Consider a gap of the
form Aq = Ape?9T where ¢ < pr. Find the new self-consistent condition for Aq.
At T = 0, show that A is independent of ¢ for ¢ < ¢, = Ap/Fve. Near T, expand
the gap equation to find that

A(T) _ 8a’ 2 ( B pr )2 )

1-T/T) —=
kT, 7;(3)( ) =3 kg T,

Then determine the critical value of ¢ that makes the gap vanish.

12.10 Evaluate the sums explicitly in Eq. (12.260) and show that for T/T, « 1, Fy — F5 &
1 = (T/T).

12.11 An Anderson-type impurity is placed in a superconductor. You are to formulate this
problem and develop a criterion for local moment formation. There are a number
of assumptions that can be applied. First, when you transform to the quasi-particle
basis, ignore all terms that do not conserve spin and particle number. The problem

(12.330)
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should now be straightforward. You should be able to redo the Anderson problem
completely. Discuss clearly when the local moment exists and when it does not.
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