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In this chapter we focus on the phenomenon of superconductivity and the Bardeen-Cooper—
Schrieffer (BCS) (BCS1957) theory behind it. Superconductivity obtains when a finite frac-
tion of the conduction electrons in a metal condense into a quantum state characterized by
a unique quantum-mechanical phase. The specific value of the quantum-mechanical phase
varies from one superconductor to another. The locking in of the phase of a number of elec-
trons on the order of Avogadro’s number ensures the rigidity of the superconducting state.
For example, electrons in the condensate find it impossible to move individually. Rather, the
whole condensate moves from one end of the sample to the other as a single unit, Likewise,
electron scattering events that tend to destroy the condensate must disrupt the phase of
a macroscopic number of electrons for the superconducting state to be destroyed. Hence,
phase rigidity implies collective motion as well as collective destruction of a superconduct-
ing condensate. The only other physical phenomenon that arises from a similar condensation
of a macroscopic number of particles into a phase-locked state is that of Bose—Einstein con-
densation. There is a crucial difference between these effects, however. The particles that
constitute the condensate in superconductivity are Cooper pairs, which do not obey Bose
statistics. In fact, it is the Pauli principle acting on the electrons comprising a Cooper pair that
prevents the complete mapping of the superconducting problem onto a simple one of Bose
condensation. As we will see, it is the Pauli principle that makes BCS theory work so well.
What do we mean by this? In BCS theory, it is assumed that electrons form Cooper pairs, and
the pairs are strongly overlapping. Such a strong overlap would imply a strong correlation
between pairs. In fact, it is the correlations between pairs that accounts for most of the ob-
served properties of superconductors, for example the energy gap and the Meissner effect. In
BCS theory, however, there is no explicit dynamical interaction between Cooper pairs. The
only interaction, if'it can be thought of in these terms, is that arising from the Pauli exclusion
principle which precludes two Cooper pairs from occupying the same momentum state. That
BCS theory works so well speaks volumes for the real nature of pair-pair correlations in met-
als. It would suggest that real pair—pair interactions in a metal arise primarily from the Pauli
exclusion principle, rather than from some additional dynamical interaction. It is primarily
for this reason that the simple pairing hypothesis of BCS has had such profound success.

12.1 Superconductivity: phenomenology

At the outset, we lay plain the experimental facts that any theory of superconductivity must
explain.
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Zero resistance The typical signature of superconductivity is the vanishing of the
electrical resistance below some critical temperature T, The superconducting state is a
thermodynamically distinct state of matter. Below T, a current flows without any loss.
Until the high-T, materials were made, Nb held the highest transition temperature at
926 K.

Meissner effect Another feature is the exclusion of magnetic fields, the Meissner effect.
Materials in which the Meissner effect is complete are known as Type [ superconductors.
Consequently, the interior of a Type I superconductor is a perfect diamagnet. A magnetic
field applied at the boundary of a Type I superconductor falls off exponentially with
distance in the interior of the material, as illustrated in Fig. 12.1. The penetration depth,
Ag, is defined as the distance over which the magnetic field decreases by the factor 1/e.
Below T, the field needed to destroy superconductivity increases to some critical value
H.(T), as illustrated in Fig. 12.2. Because the magnetic field inside a superconductor
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is zero,
B=0=Hy, + 47 M, (12.1)

where Hapy is the applied field and M the magnetization. Solving this equation, we find
that the magnetization is
1

M= —Z;T—Happl. (12.2)
The negative value of M signals that the interior of a superconductor is diamagnetic. At
any temperature less than 7;, the magnetization should be a linear function of the applied
field. A material having a magnetization of this form is called a Type I superconductor.
The normal state is indicated with an ¥ and the superconducting state with an S. Above
H;, B # 0 and the magnetization no longer obeys Eq. (12.2).

In some materials, superconductivity is observed up to an upper critical field 4, but
an incomplete Meissner effect is seen between a lower critical field H, and H,. The
resultant magnetization is shown in Fig. 12.3(b). Materials exhibiting a magnetization
of this kind are known as Type II superconductors. Between ;, and H,,, the magnetic
field penetrates the material but superconductivity is not destroyed. The field lines form
a regular array known as the Abrikosoy (A1957) vortex lattice. All high-7; cuprate
superconductors are Type II.

We are concerned primarily with Type 1 materials. To understand the penetration
depth in a superconductor, we resort to the London equations. First, we need the
Maxwell equation for the curl of an electric field: —dB/dt = ¢V X E = cpV xJ, where
p 1s the resistivity, In a perfect conductor # = 0 and, as a consequence, 3B/dr = 0.
In a superconductor, p = 0 as well. However, it is an experimental fact that B = 0
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inside a superconductor. This result cannot be deduced from the Maxwell equations.
It is the Meissner effect that sets superconductivity apart from materials that just
display perfect conductivity. Inside a superconductor, expulsion of magnetic flux is
mediated by the current that flows. London preposed in 1935 that everywhere in a
superconductor

J = —const.A, (12.3)

where A is the vector potential and B = V x A. From this ansatz, London was able to
show that a magnetic field decays exponentially inside a superconductor, Dimensionally,
the constant has units of 1/(L - time). Let us write the constant as

const. = (12.4)

4)2’

where ¢ is the speed of light. If we take the curl of both sides of Eq. (12.3), we find that

VxJ=—-——B.
4:'r}.%
From Ampére’s law,
4
VxB= 1§ (12.6)
¢
we find that
4
VX (VxB)= —¥VxJ, (12.7)
¢
which implies that
1
V2B = =B (12.8)
L
The solution to this equation,
B() = B, (12.9) |

is an expouentially decaying magnetic induction on a length scale A;. Exponential :
decay of the magnetic field into a superconductor is the Meissner effect. Let v, m*,
and e*, respectively, be the velocity, mass, and charge of the current carriers in a

superconductor. Then

a m

My = —e"E. (12.10)
The current of these electrons is defined as J = —e*vyn,, which, combined with
Eq. (12.10), yields :
¥ 2
L g (2.11) -

(12.5)
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for the time evolution of the current. Taking the curl of both sides, we find that

}1562
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d
= —(V -
0 Bt( x J)

m*
+2

d nge :
= —{VxJ B). 12.12
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Comparing Eq. (12.12) with Eq. (12.5), we obtain that the penetration depth is

. ol /2
h= (4:'!:15@*2) . (12.13)

We see then that as the superconducting density increases, A, decreases,

We can justify the main assumption in the London approach by appealing to the theory
of Ginsburg and Landau (GL1950). The crucial ingredient in this phenomenological
theory is that the difference in the free energy density between the superconducting
and normal states can be written as a functional of an order parameter, ¥ (1), for the
superconducting state. Physically, |v (r)|? is proportional to the charge density in the
superconducting state, ns. Consequently, we can interpret o (r) as the wavefunction
of the superconducting state. In BCS theory, ¥ (r) plays the role of the center-of-
mass wavefunction for a Cooper pair. Near 7, the superfinid density is small; hence
[%[* < ne. Consequently, Ginsburg and Landau expanded the free energy density for
the superconducting state in the vicinity of T, as a power series in [ ]?,

nz
F =Rt f dr (2,,,* IV + a0 + b(T)lw(r)l“) . (1214)

retaining the kinetic energy term, |Vi#}2, to account e};;plicitiy for spatial variations of
the field ¥ (r). The free energy of the normal state is Fy. The coefficients a(T') and
H(T) are real and temperature-dependent and, for stability, 5(T) = 0.
To find the ground state of the system, we minimize the free energy density with
respect to 1¥*(r):
2

V@) +a ) + DO W =0, (1215

Because the free energy density contains the term |V |2, which is always positive, the
free energy is minimized by demanding that V¢ (r) = O or, equivalently, that ¥ be uni-
form in space. Consequently, the solution to the saddle point equation is either 3 = Q or
a(T)
25(T)
which implies that a(7") < 0. Should a(7") exceed zero, Yr = 0, and the system would
be in the normal state. Since superconductivity vanishes at 7., we must have that
a(1;) = 0. A Taylor expansion of a(7") around 7, to first order leads to the result that

a(T) = ay(T — T,) (12.17)

Wl = —

=1, (12.16)

with a; > 0,
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We obtain the London conjecture by recalling that the current density in the presence
of a vector potential, A, is

2

2
SIYTA. (12.18)

3= R oy — gy - &

2inr* m

If we assume that the magnetic field is sufficiently small that the equilibrium value of
g Is unchanged, then substitution of v into Eq. (12.18) yields the London result

C 2 S
a=-2ly (12.19)
Using Eq. {12.13), we find that this result is consistent with Eq. (12.4). Hence, from‘
this simple phenomenological approach, we are able to justify the London ansatz fcn:!
the current density. Indeed, as we will see, the key intellectual content of the BCS
theory of superconductivity is the existence of an order parameter describing a chargef
2e condensate with a well-defined phase, as in the Ginzburg-Landau theory, Such a
condensate breaks the U (1) gauge symmetry, as discussed in Chapter 1. In fact, the very
existence of the Meissner effect implies the breaking of a continuous synmumetry. The
fact that a magnetic field cannot penetrate a superconductor tells us immediately that in
a superconductor, the photon is massive. Consequently, it can no longer be assumed that
the electrons are the propagating degrees of freedom. In fact, in a superconductor they
are not. The charge is quantized in units of 2e, implying that U (1) symmetry is broken.
Heat capacity In the superconducting state, the entropy decreases continuously but
dramatically, signaling the formation of a highly ordered state. This is depicted in
Fig. 12.4(a). As a result, the temperature derivative of the entropy must be steeper on
the superconducting side than on the normal side of the transition. Consequently, the
heat capacity is discontinuous at T, and superconductivity is a second-order phase
transition. As shown in Fig. 12.4(b), in the superconducting state, the heat capacity,
cs, falls off as ¢; o exp —A/kgT, where A is an energy scale. A heat capacity of this
form is indicative of an energy gap in the excitation spectrum, with €, > . Let us
verify this with the simple calculation:

2] [ d6 — 3
ov = f W%T) = o7 f e PP e, (12.20)
If (ep — u} = A, then cy ~ exp(—A(T = 0)/kpT). Consequently, in the super-
conducting state, we adopt the picture for the enerpy gap shown in Fig. 12.5. :

The formation of a gap at the Fermi level in the superconducting state results in
a lowering of the ground state energy of the system. The gap is actually 2A, not A.é
Hence, €, — w accounts for only half the gap. Experimentally, the gap can be measured|
by tunneling or ultrasound attenuation experiments. Thermodynamically, the gap givesg

b

rise to a discontinuity in the heat capacity. That is, co(7,7) — en(T,T) # 0. Across

me
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the superconducting transition, both first derivatives of the free energy vanish. Hence,
no latent heat is associated with the superconducting transition. Above T, A = 0,
and at T = 0, A has its largest value. A typical plot of A(T)/A(T = 0) is shown
in Fig. 12.6. A weak-coupling superconductor has a ratio of 2A(T = 0)/kpT; in the
range 1 to 3. Strong coupling corresponds to 2A(T = 0)/ksT; > 4. The basic energy
scale for the creation of an electron—hole pair in a superconductor is 2A.

Microwave and infrared properties As a result of the gap, photons possessing
energies Jess than 2A are not absorbed: all such photons are reflected. Perfect reflection
occurs for w < 2ZA(T = 0)/Fk. When this condition is true, photons see a compietely
resistanceless surface, As w > 2A(T = 0)/# at absolute zero, the resistance begins to
approach that of the normal state. We estimate this energy by assuming a weak-coupling
description is valid for the superconductor. Then A ~ 2kpT;, and & ~ 4kgT./fi. For
aT. of 5K, w ~ 10" s~!, This frequency is in the infrared. Infrared radiation can then
penetrate a superconductor and scatier the electrons.
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©| The behavior of the superconducting gap, A, asT — T.
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Behavior of the spin-lattice relaxation time at and below 7. The enhancement in 1/7, is a signature that the spins in a
superconductor are acting in consort.

(e) Ultrasonic attenuation No damping of an impinging beam of phonons is observed if
wq < 2A/K. As in the microwave absorption case, wq must exceed the energy needed
to create an electron—hole pair. :

(f) Nuclear-spin relaxation Consider a set of nuclei that have been forced to align wit
a magnetic field. The rate at which the equilibrium magnetization is recovered is the
spin lattice relaxation rate, 1/7;. In a superconductor, (1/7)s > (1/7})n just below
7;. That is, there is an enhancement in the relaxation rate that is brought on by the
formation of the superconducting state. Hebel and Slichter (HS1959) were the first to
see this effect experimentally. The peak in the relaxation rate just below T, is known
as the Hebel--Slichter peak.

(g) Isotope effect Experimentally, it is observed that if the mass of the ions is changed
isotopically, T, changes accordingly:

1
/i

T: o wp. (12.21)
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