15.6 Laughlin liquid

There are only two distinct solutions to this equation, 8 = 0 and 6 = m. The former
corresponds to the standard band insulator and the latter to the topological insulator. We
can express this simply as
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and hence @ is the key Z; invariant that allows us to distinguish traditional insulators from
band insulators. What does this mean physically? Applying a field produces a flux which
in turn gives rise to a Hall conductance. The normalization we have chosen such that 8 is
the Z; invariant tells us immediately that the Hall conductance for a single Dirac cone is
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Ineffect, & = s implies that there is only a single Dirac cone on the surface of a topological
insulator and hence such states are distinct front a single layer of carbon, graphene, which
has an even number. Although this formulation has a drawback in that it assumes a gap
exists, it does serve to illustrate clearly that the Z; invariance of the magneto-electric term
in the action underlies the physics of topological insulators,

15.6 Laughlin liquid

In the original experiments of Tsui, Stérmer, and Gossard (TSG1982), the Hall conductance
exhibited a sharp plateau at the value of €?/3/. In later experiments, fractional quantization
of the Hall conductance was also observed for values of 4/3, 5/3, 7/3, 1/5, 2/5, 3/5,
7/5, 8/5, etc. The common ingredient in these sequences is the presence of the odd
denominator. The original challenge in explaining these experiments, however, lay not so
much in accounting for the fractional value of the Hall conductance but rather in explaining
the nature of the electronic state that exhibited the fractional quantization. For example,
a non-interacting model in which the lowest Landau level is fractionaily occupied at a
filling of v will exhibit a conductance ve*/h. However, when a Landau level is fractionally
accupied, electrons can scatier into the empty states and hence longitudinal transport will
not be dissipationless; as a consequence, oy, 7 0. In addition, the persistence of a plateau at
fractional filling indicates that somehow an appropriately partially occupied Landau level
is stable to even the lowest-lying excitations, That is, an energy gap separates the ground
state from all excited states. In the absence of eleciron interactions, the energy cost to
add an additional electron to a partially filled Landau level is essentially zero. This would
suggest that as the field is changed, sharp plateaus in the conductance should desist in the
non-interacting model for a partially filled Landau level.
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Consequently, the fractional quantum Hall state cannot be understood without including
the role of electron interactions. However, at the outset, it is not clear what this state should
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look like. Thus far, we have introduced two electronic states that arise fundamentally from |
electron-electron interactions: the Wigner crystal and the superconducting state. While
the vanishing of the longitudinal resistance suggests that the fractional quantum Hall
state bears some resemblance to a superconducting state, it is not clear how such a state
would survive a large perpendicular magnetic field. What about the Wigner crystal? As
mentioned in Chapter 5, because a magnetic field freezes the electron zero-point motion, |
Wigner crystallization is stabilized. In fact, in the limit in which the interparticle separation

is large relative to the cyclotron radius (magnetic length), electron correlations dominate
and the conditions for Wigner crystalization become favorable. However, 2 Wigner crystal
does not exhibit dissipationless transport as a threshold voltage must be appHed before
transport obtains. We suspect then that the resolution of the fractional quantum Hall state
lies elsewhere.

Indeed it does. Afler Laughlin (L.1983; L1987), we consider an interacting electron gas |

in the presence of a perpendicular magnetic field
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where /() is the compensating neutralizing potential from the ions and the sums over /
and j are over the electrons. Fractional quantization of the Hall conductance is observed
at a field of 15T. At this field, the cyclotron energy is roughly three times the Coulomb
energy, 2 /£. Hence, it should be a fairly good approximation to use the non-interacting
eigenstates of the lowest Landau level as a starting basis for constructing the true many-
body wavefunction. In general, the non-interacting eigenstates are products of a polynomial
in the electron coordinate and a Gaussian. For an interacting system, we expect that the
true many-body state will involve differences of the electron coordinates. Let us define the
complex electron coordinate, z = x - iy. We consider the ansatz,
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where f(z;—z;) is a polynomial in the electron coordinates. After studying the two-electron

problem described by Eq. (15.83), Laughlin found that f(z; — z) = () — 23)?P*!, where
p is an integer. Because the exponent 2p -+ 1 is odd, the wavefunction is antisynunetric
with respect to imnterchange of two electrons. Analogous results were also obtained for the
equivalent three-electron problem (L1983). Hence, Laughlin proposed that
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must accurately describe the ground state of a fractional quantum Hall system, Whiie this
wavefunction was originally argued to be a variational state (where » must be determined),
the overlap of this wavefunction with the exact eigenstate for small clusters of electrons is
typically greater than 99 percent for interaction potentials of the form u(r) = 1/r, —Inr,
and exp(—r? /2). This would suggest that the variational character of W, is minimal, and
i must be determined from a fundamental principle. It turns out that I, is an eigenstate
of the total angular momentum operator with eigenvalue
NN — Dy
—
That M is the total angular momentum of the operator L. follows from expanding the
product over z; —z; in Eq. (15.84) and realizing that there are at most N (N — 1)m/2 factors
of z; in each term. If the differential form of the L; operator is applied to such a product,
the eigenvalue M results. As a consequence, we can think of the Laughlin state as being a
superposition of states within the lowest Landau level with the same angular momentum.
This removes completely the variational character of the Laughlin state,

To understand precisely what physics the Laughlin state describes, we write the square
of this state
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in terms of a Boltzmann wei ght, where @ is the interaction energy,
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and B = m plays the role of the inverse temperature. Equation (15.88) is exactly the
interaction energy for a one-component plasma (such as an electron gas) consisting of ¥
identical charges with charge +/2. The second term in Eq. (15.88) represents the interaction
energy with the neutralizing background, Uy, (z;) = (zi|2/(2m€2). To see this clearly, we
note that the potential for the compensating background should satisfy a Poisson equation,
V2Uy(z;} = 4n p, where p is given by vng = v/(2m £%) (see Eq. (15.21)). Performing the
differentiation in the Poisson equation reveals that the compensating charge density per
unit area,

v
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is exactly the uniform electron charge density in the lowest Landau level if we identify the
Landau filling factor v with 1/m. The Laughlin state accurately describes the ground state
of an N-electron system for density and magnetic field strengths such that the filling in the
lowest Landau level is given by v = 1/m. As a system with a uniform electron density,
the Laughlin state is distinct from an electron crystal state, such as a Wigner crystal. In
fact, electrons condensing into the Laughlin state do so without breaking any symmetries.
Hence, a Landau-type description presented in the previous chapter, which necessarily

p o= (15.89)
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involves the symmetry breaking of some order parameter, is not possible for the formation
of fractional quantum Hall states. The importance of the Laughlin state in the development
of the fractional quantum Hall effect cannot be overestimated,

We are now poised to explore the excitations of the Laughlin liquid. For filling fractions
v different from 1/m, excitations emerge. Consider changing the filling by piercing the
sample at zg with an infinitely thin magnetic solenoid, Although v is now slightly less than
1/m, the electrons will attempt to stay in the state \I,,,. However, they camnot do this without
diminishing the charge density at the insertion point of the magnetic solenoid. We can
simulate such a depletion by excluding the electrons from zy. Consequently, we anticipate
that
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might describe the wavefunction for the new many-body state with a “quasi-hole” at z;.
Indeed it does, as shown by Laughlin (L.1983). A more quantitative argument for the quasi-
particle wavefunction in Eq. (15.90) stems from noting that if the solenoid carries flux ¢,
each single-particle state is changed accordingly,

N z"*“e_%;, (15.91)
to accommodate the additional flux. Here « = ¢ /¢bg, with ¢pp = hic/e the flux quantum. If
the solenoid carries one quantum of flux, then the prefactor of the Gaussian is z*1. That
each single-particle state is now muitiplied by an extra factor of z supports the ansatz for
the quasi-particle wavefunction, Eq. (15.90). To utilize the plasma analogy, we square the
quasi-particle wavefunction to find that, aside from a background normalization factor of
|zo|?, the energy of the many-body state with a “quasi-hole”,
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is that of a one-component plasma interacting with a charge fixed at zp. The magnitude
of the charge is 1/m or, in electron units, ¢/mi. Likewise, if the solenoid were to extract a
single flux quantum, a “quasi-electron” would be created with charge —e/m. Numerically,
the energy to create or destroy quasi-particles in a three-electron fractional quantum Hall
state is roughly 4 K ata field of 15 T (L1983). Improved estimates of the gap in the fractional
quantum Hall state were obtained by Girvin, MacDonald, and Platzman (GMP1985). In
fact, their work was pivotal in establishing that all collective excitations from the Laughlin
state have a finite energy gap. Hence, the Laughlin state does satisfy the criterion of having
a gap to all excitations. The excitation energy can be thought of as the Coulomb energy
required to place a particle of charge £e/m in the quantum liquid, The distance over which
the charge acts is proportional to the magnetic length, o £. Hence, the excitation energy
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should scale as e?/£ o« /B and thus vanishes in the absence of an applied magnetic field.
It is the presence of the energy gap in the excitation spectrum that makes the Lau ghlin state
incompressible and ultimately leads to dissipationless transport.

Nonetheless, some experiments have revealed the existence of gapless excita-
tions (ASHI1983; MDF1985) in 2d quantum Hall systems. These excitations are believed
to live on the edge of quantum Hall systems as they are explicitly excluded from the bulk
by Laughlins gauge argument. For integer quantum Hall states, the edge excitations are
well described by Fermi liquid theory as electron interactions are relatively unimportant in
the integer effect. However, in the fiactional quantum Hall effect, the situation is entirely
different, as we have seen. Quantum mechanical states confined to move at the edge of a
fractional quantum Hall system are essentially Id strongly correlated electron systems. We
have shown in Chapter 10 that electron interactions in a 1d system give rise to Luttinger
rather than Fermi liquid behavior. As a result of the chirality of the edge current, edge states
in the fractional quantum Hall effect are chiral Luttinger liquids (W1990). They exhibit all
the properties indicative of Luttinger liquids discussed in Chapter 9, including an excita-
tion spectrum that vanishes algebraically in the vicinity of the Fermi energy. Figure 10.6
confirms the algebraic dependence of the excitation spectrum in the edge of the v = 1/3
quantum Hall state, thereby putting the chiral Luttinger liquid model for the edge states in
the fractional quantum Hall effect on firm experimental footing.

Consider for the moment the problem of the statistics associated with interchang-
ing (A1985; F1992) two quasi-holes or two quasi-clectrons in a fractional quanium Hall
state. The wavefunction describing such pair excitations, which we will locate at z = =z and
z = 2", is analogous to Eq. (15.90) except the product A% A% now multiplies the Laughlin
state \I',,. The problem we address is, under interchange of two quasi-particles such that

AZAZ (2, z) = e AR A, (21, L zy), (15.93)

what phase, ¢, does the wavefunction incur? For interchange of electrons, ¢¢ = n and
for bosons, ¢ = 2 or, equivalently, 0. We will show now that the phase change for the
interchange of two quasi-particles in the Laughlin state is 1 /mr and hence fractional.

Quite generally, the wavefunction of a particle traversing a closed loop in the presence
of a vector potential will acquire the phase

iy = i_ijﬂde AL (15.94)
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We will take the vector potential to be the generator of the magnetic field B felt by the
particle. Consequently, the line integral that determines the phase is simply equal to the field
times the surface area enclosed by the path. Let R be the radius of the loop. As a result, the
phase change is y = gn R?B/kc. Recalling that the magnetic fleld is related to the electron
density through p = veB/lic, and the quasi-particle charge is ev, we find that the total phase
encountered is y = 2N, where & is the number of electrons in the system. This is a key
result as the phase is proportional to the number of electrons enclosed in the loop. Now let
us redo the argument assuming that amidst the sea of electrons lies a quasi-hole of charge
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