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Hall resistance,
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is linearly related to the applied magnetic field, while the longitudinal resistance,
|2 LE, L1
B= == (15.8)

I Wi Wa
is independent of the magnetic field. Experimentally, these relationships agree well with
Hall’s measurements in 1879 (H1879). Note that Ry as we have calculated it here is
independent of the details of the electron scattering processes. In general there is a weak
dependence on such processes.

In 1980 von Klitzing and collaborators (KDP1980) noticed striking deviations from the
resistances given by Eqs. (15.7) and (15.8) at sufficiently high magnetic fields and ultra-low
temperatures. They performed their remarkable experiments on a 2d electron gas confined
at the interface between S5i0; and Siin étl SiMOSFET. They found that the Hall voltage as
the magnetic field increased exhibited distinct flat or plateau regions that were highly repro-
ducible from sample to sample, as shown in Fig. 15.2. From the value of the Hall voltage at
the plateaun regions, they deduced that the Hall conductance (the inverse of the resistance)
must be quantized in units of * /4. The quantization of the conductance in the form

o = — (15.9)

where n is an integer, was found to hold for one part in 107. Equally surprising was
the behavior of the longitudinal resistance. They found that the longitudinal resistance
vanished exactly at the Hall plateaus, indicating the onset of dissipationless transport.
The presence of both quantization and perfect conduction indicates that something quite
fundamental is at the heart of these experiments. At much higher magnetic fields and lower
temperatures, Tsui, Stérmer, and Gossard (TSG1982) found that the plateau regions in
the Hall voltage were more plentifu] than had been thought possible. They found that the
plateau regions can occur when the conductance is a fractional multiple of e* /4, indicating
the presence of fractionally charged excitations. We will show that the integer Hall effect
can be understood simply as a quantization of the edge current, whereas the fractional effect
arises from a fundamentally new correlated many-body state, the Laughlin state (L.1983).

15.2 Landau levels

To start, we solve for the wavefunctions describing an electron moving in a plane pierced
by a perpendicular magnetic field. Following Landau’s original treatment, we orient the




n

15.2 landau levels

Voo/mV p-Substrate
ViV pp/iml W Hail Probe
Drain
25425
Surface Channel
n+
Source Gate
2012.0 X
Potential Probes
16115
—|
— Vep
10+1.0
5105
0 | l
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I = 1.5 K. The magnetic field was held fixed at 18 T and the source drain current at 1 A. Shown in the inset s a top
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probes of Ly, = 130 pm. The Hall plateaus occur at integer values of the filling in each Landau level indicated with
the index, n. At the plateaus in the Hall voltage, the longitudinal voltage goes te zero, indicating the presence of
dissipationless transport.

vector potential
A, =Bx, A, =0, (15.10)

along the y-direction and the single-particle Schrodinger equation takes the form

S

(82 + (8, — ieBx/he)?) ¥ (x,¥) = E¢r (%, ). (15.11)
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This choice of gauge is most convenient to describe transport in the integer quantum Hall
effect. In the context of the fractional quantum Hall effect, however, we will find it expedient
to work in the symmetric gauge in which

A= g(yf— ). (15.12)
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In the symmetric gauge, applying a magnetic field in the z-direction leads to a harmonic

oscillator problem along both the x- and y-axes. Hence, this problem can easily be solved

once the solution to the simpler problem described by Eq. (13.10) is obtained.
Translational invartance in the y-direction suggests that we write the wavefunction as

Yk (x, ¥} = ¥ £, (x). (15.13)

Substitution of ¥, 2 (x, ) into Eq. (15.11) reveals that £, (x) is a solution to a harmonic
oscillator equation

% (—€28 + (/8 = £0)°) L) = enfu®), (15.14)

where, unlike the cycloiron frequency, the length scale

e= fhe 2504 (15.15)

eB /B

is independent of the effective mass and is changed entirely by varying the magnetic field.
Known as the magnetic length, £ is roughly 250 A forafield of B = 1 T. From the harmonic
oscillator ground state, we generate a Gaussian family of wavefunctions

{x=x, )2

Ynie (. y) = e H, (x/8 — Lh)e™ 2 (15.16)

which are extended in the y-direction but localized in x and centered at x; = £k, In
Eq. (15.16), H, is a Hermite polynomial. Each state indexed by » is known as a Landau
level. The energy of each Landau level is

1
€ = hiooe (n—l— E) (15.17)

and hence is independent of k. As a result, several iso-energetic states compose each Landau
level. For a field of B = 1T, the zero-point energy is on the order of 10~4eV, or 1.34K,
We will see the effects of quantization in the discrete Landau levels if the temperature is
lower than that determined by the zero-point energy. Our estimate of 1.34 K is a bit in error
as we have not used the semiconductor effective mass. For GaAs, m* = 0.06m; hence, the
zero-point energy increases by a factor of 16 as does the temperature at which quantization
effects in Landan levels are experimentally observable.

As aresult of the degeneracy, each Landau level can hold many electrons. The degeneracy
is determined by the distinct number of k values that generate a state within the same Landau
level. We note that the states comprising each Landau level are centered atx; = £k, where
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k can take on a range of values consistent with the confinement of the system in the y-
direction. Let L and # be the spatial extents of the sample in the x- and y-directions,
respectively. If we write the wavevector k as

2mm

km = V: (1518)

with s an integer, the maxinum number of states allowable in each Landau level is obtained
by solving the condition L = €%k, or, equivalently,
L eBLW
My = — = ———. 15.19

The right-hand side of this expression has a simple physical interpretation. The total
magnetic flux in each Landau level is a product of the magnetic field and the area of the
sample, BLW . This quantity must be equal to the number of electrons in each level times the
flux quantum, se/e. We see then that No,, is also the number of electrons in each Landau
level. Consequently, we associate with each Landau level

__ 1 _ €8
T 2w ke

as the number of states per unit area. Physically, 1/np is the irreducible area each state
occupies in a Landau level. For B = 17, the irreducible area corresponds to a square with
sides of about 0.6 x 10~? m, roughly ten times the Bohr radius. Note the area 1/n; is
invariant from one Landau level to the next. As a result, the total number of filled Landau
levels is given by

(15.20)
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where p is the number of electrons per unit area. In the integer quantum Hall effect, vis an
integer.

It should now be clear that if the number of electrons in the system is an integral
multiple of rp, then the conductance is quantized. Under such conditions, the electron
density p = nrg, where n is an integer. As the reciprocal of the Hall resistance, the Hall
conductance is given by oy = —ecp/B = ecnng/B = —ne* /h.

We can formulate a more penetrating argument for the quantization by appealing to the
vanishing of the Lorentz force. If the system is translationally invariant, then the vanishing
of the Lorentz force signifies that we can switch to a reference frame which moves at a
velocity v relative to the laboratory frame such that v x B = —¢E. In this reference frame,
the velocity is given by v; = cE;/Bye; where €y, is the totally antisymmetric unit tensor
defined by

€123 = €p3] = €312 = |,  even permutation,
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The total current along the {-axis is given by Qew;, where Q is the total charge in the system.
If n Landau levels are occupied with Ny, electrons in each, then O = nNp. Hence, the
current density is given by

eQu;  ecOE;

N Tw T BLw

where oy, the coefficient of £}, is the transverse current. This current is antisymmetric
with respect to permutation of the indices x and y. Recall that the total magnetic flux
BLW = Nyache/e. As a consequence,

€; = oi;E;, (15.23)

ecQ ecnN, ne
Oy = o = T (15.24)
© BLW  Nywhc/e h
Because the transverse current is antisymmetric, Oy = —Gyy. In the moving reference

frame, the diagonal conductance, o, = 0 as a result of the vanishing of the fongitudinal
electric field. There is a fundamental physical reason for the vanishing of o, however,
Because the Fermi level lies in the gap between the highest-occupied and the lowest-
unoccupied Landau levels, o, vanishes. Alternatively, the allowable phase space for scat-
tering states vanishes when the Fermi level lies in a gap; hence p, = 0 as well. We see
then that the conductance in the quantum Hal regime is a purely off-diagonal tensor with

elements
e
O'zl:?!eg S] (15.25)
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Whether oy, or 6, are identified as the proper Hall conductance simply depends on the axis
system used to orient the electric and magnetic fields.

15.3 The role of disorder

While the preceding argument is simple, it does not apply to dirty systems in which
translational invariance is broken. Further, it cannot explain the origin of fractional values
of the conductance. In fact, it is easy to see that, without disorder, we cannot account for
the plateau nature of the quantum Hall effect. In a translationally invariant system, all the
electronic states are extended. If an integral number of Landau levels are occupied, then the
Fermi level lies in the gap between the highest-occupied and lowest-unoccupied Landau
levels. As the magnetic field decreases, the Fermi level remains constant until the next
Landau level is filled, at which point it jumps discontinuously. This would suggest that the
Hall conductance should decrease monotonically as a function of magnetic ficld as in the
classical case. From whence then do the plateaus come?

It turns out that disorder saves us. As we showed in Chapter 13, disorder changes both
the spatial extent and the energy of electronic states. Hence, the degenerate band of states
comprising each Landau level can be thought of as being broadened into a band of states that
we describe approximately as having a Lorentzian lineshape centered at the unperturbed
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| (a) Density of states of Landau levels in a magnetic field. (b) Breadening of the Landau levels as a result of disarder.

The dashed line shows the position of the Fermi level.

energy of each Landau level. This is illustrated in Fig. 15.3. Intuitively, the further an
electronic state moves away from the unperturbed energy of each Landau level, the more
affected it is by the disorder and hence the more it has a tendency to be localized. This can
be seen by treating the disorder perturbatively. Hence, we arrive at the simple picture that
the states close to the center of the Landau level are less localized than those at the edge
of the Lorentzian distribution. We showed in Chapter 13, however, that current-carrying
states do not survive for even an infinitesimal amount of disorder in = 2. If this state
of affairs persists in the presence of a magnetic field, we arrive at the conclusion that the
conductance should vanish in quanium Hall systems as well. However, a magnetic field
is present. As we showed in Chapter 12, magnetic fields break time-reversal symmetry
and hence disrupt the phase coherence needed to localize electronic states, In d = 2,
field theoretic (P1984) as well as numerical studies (AA1981; P1981; T1983) show that the
scaling theory of localization does in fact break down and current-carrying states obtain. As
expected, they remain clustered at the unperturbed energy of each Landau level. All other
states are localized. A sharp mobility edge demarcates the separation in energy between
the extended and localized states,

From the simple picture that extended states form only at the center of each Landau
level and all the other states are Iocalized, we can explain the origin of the quantum Hall
plateaus. Because the current is carried only by the states at the center of each Landau level,
the current should jump discontinuously as the Fermi level is tuned through the center of
each Landau level, Further, the current should remain constant if the occupation of the
extended states remains unchanged. That is, although increasing the magnetic field causes
the chemical potential to move away from the magical place where the extended states are
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located, the conductance does not change because the chemical potential now resides in
a region where the states are localized. The plateaus correspond to the range of magnetic

fields for which the population in the extended states is fixed. The presence of precisely flat |
steps in the Hall voltage attests to the extreme localization of all states in a Landau level

except for the narrow region of extended states located at the center. It is for this reason that
the quantum Hall effect is fundamentally rooted in disorder. Paradoxically, disorder does
not affect the value of the Hall conductance. Specifically, Aoki and Ando (AA1981) and
Prange (P1981; P1987) showed to the lowest order in the drift velocity, v, = cE,/B;, that
although an isolated d-function impurity binds an electron state, the extended states carry
Just enough extra current to compensate for the loss,

15.4 Currents at the edge

Thus far, we have argued that disorder localizes all electronic states except for those in a
narrow window around the unperturbed energy of each Landau level. Once the chemical
potential moves into this region, increasing the field further has no effect on the conductance
because all other states are localized. Quantum Hall plateaus originate then from the
separation in energy between extended and localized states. The only possible deviations
from perfectly flat plateaus might originate from thermalily activated transport from a
localized state to an extended state at the center of a Landau level. At low temperatures,
such processes confribute negligibly to the transport.

We have yet to explain, however, why the quantization of the conductance in integral |

multiples of € /A is so precise. As noted by Laughlin (L 1980), the precise quantization of the

conductance suggests that the quantum Hall effect must be due to a fundamental principle
devoid of any material parameters, such as geometry. To this end, Laughlin formulated a
gauge principle to explain the quantization of the Hall conductance,

To understand the essence of this argument, we first make a general observation regarding

the current in 2d systems in a magnetic field, As stated earlier, electrons in a magnetic field |,

move in circular orbits as a result of the Lorentz force. As illustrated in Fig. 154, in

the bulk of a sample, clockwise and counter-clockwise pieces of neighboring cyclotron

orbits overlap, leading to a vanishing of the current in the bulk. The situation is quite
different at the edges of the sample, however. At the edge, the orbits are truncated in

response to the confining potential created by the boundary. Once an electron is reflected |

by the boundary, it still attempts to move in a circular orbit. This induces a skipping-type
motion of an electron at the boundary of the sample, as shown in Fig. 15.4. Such motion

generates an edge current that flows in the clockwise direction for a magnetic field oriented |

along the positive z-direction. The chirality of the edge current is determined then by the
direction of the magnetic field. While the above argument is valid strictly when the magnetic
length much exceeds the wavelength of the electron, £ 3 F/pp, the chirality of the edge
current can be established quite generally from the presence of an induction field at the
boundary (W1990). That the current arises from states at the edge is a truly novel feature
of quantum Hall systems. The chirality of the current at the edge is also at the heart of why
the edge states remain extended. As we learned in Chapter 12, backscattering is essential
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current
vanishes

2 il (ydotronorbitsina guantum Hall system. The circular orbits are caused by the Lorentz force. In the bulk of the sample,
dockwise and counter-clockwise pieces of cyclotron arbits overlap and cancel, leading to a vanishing of the current in
the bulk. At the edges, the arbits are truncated and give rise to an edge current.

for localization to obtain. There can be no backscattering for a chiral edge state. Hence,
they resist localization by a random potential.

Since the current is carried entirely by the edges, the geometry of our system cannot
matter, This simple realization already implies that the current in the quantum Hall effect
is a topological invariant, We consider then a quantum Hall disk with a hole punched
into the center, as depicted in Fig. 15.5. This geometry is equivalent to the one used by
Halperin (H1982) in his reformulation of the original Laughlin argument. The disk is pierced
with a uniform magnetic field in the positive z-direction. Truncation of the cyclotron orbits
at the outer rim of the disk leads to an edge current that flows in the clockwise direction.
However, at the inner radius, confinement leads to a current in the opposite direction.
Clearly then, if the outer and inner edges of our annulus are at the same chemical potential,
no net current will flow in the system. Let’s assume that the Fermi levels of the inner
and outer edges differ by an amount eEy. This difference might be due to asymmetries in
the confinement potentials at the inner and outer edges as well as to any electro-chemical
potentials that might be present. If » Landau levels are occupied, then the total potential
drop is neflp. The identical argument leading to Eq. (15.23) can now be invoked and we
obtain immediately that the net current between the inner and outer edges is quantized in
units of &2 /k.

However, with a little more effort, we can extract the same result from a different way.
We consider now the second geometry shown in Fig. 15.5(b). In formulating the gauge
argument, we will find it easier to work with this geometry as the Landau gauge used
previously is directly applicable. Our coordinate system is chosen so that the y-coordinate
runs around the ribbon. As before, the current is carried by the edge states only. These
states encircle the ribbon preserving phase coherence as they return to the origin. For the
wavefunctions characterizing the edge states to be single-valued, the flux enclosed upon
one trek around the disk must be an integral multiple of 2. Hence, whatever change we
make in the vector potential should satisfy the condition that

nhe

4=—
el

(15.26)
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+ {a) Aquantum Hall disk pierced by a magnetic field pointing out of the page. The arrows indicate the direction of the

edge currents. (b} A quantum Hall ribbon in which the magnetic field is everywhere perpendicular to the surface, This
geometry is mathematically equivalent to a rectangle with periodic boundary conditions in ene direction, The
drcumference of the ribbon is £ and its width is W. The Hall voitage is AV = EW.

where L is the circumference of the ribbon. For small changes in the vector potential, the
current in our system is gauge invariant. Consider now the energy

€o = (W |HWe) (1527)

of aparticular single-particle state, W, where A is given by the lefi-hand side of Eq. (15.11).
For short-hand notation, we have defined o = (i, £). We are interested in the derivative of
the ¢, with respect to 4. To simplify this derivative, we use the Hellman-Feynman (H1937)
theorem

AE() AH ()
ax = (el L3

o), (15.28)
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. Thelocation of the centers for the electron states that comprise each Landau level. All states are assumed to be

degenerate, with their centers given by £2k;, = 27 ficm /eBL. The difference between two centers is hc/eBL.
Threading the sample with one flux quantum transforms the mth state into the (m — 1)st. This results in the transfer
of charge from one edge of the sample to the other,

where A is simply some variable in the Hamiltonian. Varying the single-particle energy
with respect to 4,

€y —e ed
= \ya - - \pur
A mc( o c Pa)

ey (15.29)
c

defines the current density carried by the state ¢ as it traverses the disk. To evaluate the
derivative, we note that in the presence of an electric field, the single-particle energies scale
linearly with eEgx;, where x; locates the center of the states comprising each Landau level.
If we modify the gauge term in the Hamiltonian such that A = Bxp ~ Bxay + AAp, then
the location of each center is shifted by x; — x; — A4/B. Consequently, the single-particle
energies are translated to 6, — €, — eFyAA/B, and

36,1 eE[)
— = 15.30
04 B ( )

is independent of the state index. As illustrated in Fig. 15.6, Langhlin’s gauge principle
{L1980) follows from the fact that the difference between the location of the centers of two
neighboring states in the same Landau level,

2 2
Axp = x}:f“ _xi'—r = 22 (km-{-l - km) ="
} Ad
= 24 (15.31)
eBL ™ B

is directly related to the change in the vector potential. Consequently, if A is changed by a
single flux quantum, the location of the mth center,

ol i Ad ) he m—
x’k —>x’k’—--E—=x}\.'-;l—i'-mxk‘ ], (1532)

is now coincident with the location of the (m — 1)st center. Hence, when one flux quantum
is threaded through the ribbon, the states in a Landau level all shift over by one, leading
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to the net transfer of a single electron (per Landau level) from one edge of the sample to
the other. Quantization of the gauge leads to quantization in the charge transfer! This is the
Laughlin gauge principle. It illustrates beautifully the topological (T1982) nature of charge
transport in the quantum Hall effect. To calculate the current, we substitute Eq. (15.30) into
Bq. (15.29) and sum over all occupied Landau levels. We obtain immediately that the net
current between the edges,

I=Y I

a,k
_ _ecNeEg _ _ecrmBVH _ _nezVH, (15.33)
LB B h

is an integer multiple of e /h with ¥y = Egl¥, the Hall voltage and N, = nngLi¥. The
negative sign in the current corresponds to counter-clockwise niotion on the ribbon. The
Laughlin argument lays plain that the quantization of the Hall current or Hall conductance
arises primarily from the restriction that the extended states must be single-valued as they
traverse the edge of the sample. For a system in a magnetic field, the single-valuedness of
the eigenstates manifests itself as a condition on allowable gauge transformations. It is this
condition coupled with the integer filling of Landau levels that leads to the quantization. It
is also paramount that the gauge transformation be carried adiabatically, so that the system
remains in its ground state as the flux penetrating the system is changed.

As the platean transitions are driven by changing the magnetic field or the filling,
they constitute a genuine quantum phase transition of the kind studied in the previous
chapter. In fact, because disorder is central to the story of the integer quantum Hall ef-
fect, the underlying plateau transitions represent one of the clearest examples of quan-
tum critical phenomena in a disordered system. Progress in understanding the underlying
field-theoretical description of the plateau transitions is based largely on the Chalker—
Coddington tunneling network moedel (CCI988; MT1999; 21999). Numerical simulations
of this model (LWIK1993; LC1994) have yielded a correlation length exponent of v = 2.3
which is consistent with experimental observations. However, this exponent is yet to be
predicted by a rigorous theoretical account.

15.5 Topological insulators

In the quantum Hall effect, the current is carried by the edge. That it must be an integer
multiple of e?/# is determined entirely by the fact that when the electromagnetic gauge is
changed by a single flux quantum, a single charge is transported across the sample. Since
the edge states must be single-valued and their single-valuedness places a constraint on
the possible changes in the clectromagnetic gauge, the current in the quantum Hall system
is robust. The topology of the sample is the only determining factor since o, is entirely
an edge effect. While the edge of the sample conducts, the bulk is entirely insulating.
Hence, quantum Hall samples are topological insulators. Because time-reversal symmetry
is broken, the backward- and forward-moving edge states are spatially separated. Hence, if
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i {a) A quantum Hall bar with chiral edge states. (b) Corresponding schematic band structure for a quantum Hall system
with a single edge state crossing the band gap. In the ahsence of time-reversal symmetry breaking, the edge states of
a particular chirality cross the Fermi level once.

we plot the band structure of a quantum Hall system near an edge, it would look something
like Fig. 15.7. Shown here is the band gap between two Landau levels and a single edge state
traversing the gap. The key observation in quantum Hall systems is that 2 = 1 - 1, That is,
there are two edge states but only one at each edge as a result of the breaking of time-reversal
symmetry. As pointed out previously, elastic scattering arising from impurities at each edge
will not result in backscattering since the states at each edge propagate in only a single
direction. There is a possibility that elastic scattering from one edge could give rise to a
counter-propagating state. But this would require an electron jumping across the sample to
the other edge. The probability for such an event is exponentially small, however, Hence,
the only option for an electron encountering an elastic impurity is simply to go around it
and continue moving in the same direction.

Consider now turning off the magnetic field. Is it still possible to have edge states that
are impervious to backscattering? It turns out the answer is yes. It is this simple realization
that spawned the field of topological insulators (KM2005a; KM2005b; TFK2008; HK2010;
BHZ2006; R2009; MB2007; X2009; Z2009;, QHZ2008; QZ2010; K2007; BZ2006). The
key point here is that 4 = 2 + 2 (QZ2010). That is, when time-reversal symmetry is
preserved, there must be two propagating states at each edge. Time-reversal symmetry at
gach edge ensures that the forward and backward propagating states have opposite spin.
Of course an electron can move in the opposite direction if it scatters to the opposite side
of the sample. Here again, this is an exponentially small process. Hence, as long as the
impurities are featureless in that the interactions arising from them cannot mix spin, there
is no way to backscatter an electron. However, this argument, as formulated, fails if spin-
orbit scattering is present. To our rescue comes a remarkable property of time-reversal for
spin-1/2 particles. In quantum mechanics, the time-reversal operator for spin-1/2 particles
is governed by the anti-unitary operator,

T = lT%E, (15.34)

where o, is the y-Pauli matrix defined in Chapter 7 and K performs complex conjugation.
Using the fact that 0‘),2 = 1, one can expand the exponential in the time-reversal operator
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A quantum spin Hall system with two propagating states per edge. Kramers' theorem implies that such states mus be

V doubly degenerate. The up and down arrows indicate the spin.

and establish that for an arbitrary angle o,

el*/2% = oy, sine/2 + cosor /2. {15.35)
Consequently, rofating a spin-1/2 particle by 2z does not return the particle to its orig-
inal state but to its negative and T2 = —1. This is the origin of the Kramers doubling.
Namely, all eigenstates of a time-reversal invariant (TRI) Hamiltonian must be doubly de-
generate. Hence, the edge states have to come in pairs, one for each spin, as depicted in
Fig. 15.8.

That 7% = —1 protects the surface states from opening a gap in the presence of spin—
orbit scattering can be itlustrated in one of two ways, Consider the consequences of elastic
scattering. In a semiclassical picture, a forward-moving electron encountering an impurity
which can have spin-orbit scattering can be reflected backwards. However, since the only
channel for backward motion at the edge in question has the opposite spin, the electron
must flip its spin. In this process, the spin picks up a phase of #. Running this process
backward in time, TRI implies that there is an equivalent process in which a forward-moving
electron is scattered backward, but picks up a phase change of —x. (The two processes can
be thought of as anticlockwise and clockwise rotations of spin.) The magnitudes of these
amplitudes are identical as long as TRI is present. However, the phase change between
these two paths is 2z and hence the wavefunction changes by —1. Both paths add to
yield a vanishing scattering amplitude from an impurity; that is, there is perfect destructive
interference. Consequently, as long as TRI is present, there is no way to backscatter off an
impurity, and the surface states must cross the gap, thereby giving rise to a net longitudinal
current. Alternatively, we can establish the robustness of the surface states from a band
argurnent. TRI implieé that the surface states must come in pairs with equal and opposite
momenta. Which momentum is assigned spin up or spin down is irrelevant. Further, the
edge states must have the same energy at the TRI points in the Brillouin zone which for
cne-dimensional edge states are &k = 0 and k = 7 /a. Note, the &k = —m /a point is identical
to 7 fa by TRI. Away from the TRI points, the spin—orbit interaction can lift the degeneracy
between the edge states. The question is how is the degeneracy lified. If the pair of edge
states joins the degenerate points as in Fig. 15.9(a), then the surface states are not robust.
Figure 15.9(a) is topologically identical to Fig. 15.9(b} as the chemical potential can be
moved up and down in the gap. Note, it is irrelevant that the edges states cross the Fermi
energy twice. As long as they cross an even number of times, the analog of Fig. 15.9(b)
can always be constructed. Consequently, the edge states acquire a mass. However, this is
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Electronic dispersion between two Kramers degenerate (or time-reversal-invariance) points I and I, For & 2d
sample, the degenerate points areat T"; = 0 and Iy == 7 /a. (a) Evolution of the surface states between the two
Kramers points when the number of Fermi crossing points is even. (b) A distortion of (a) which gaps the surface states.
Such a deformation of (a) is always possible if the edge states cross the chemical potential an even number of times.
Consequently (a) and (b} are topologically indistinguishable. In {c}, there s only a single crossing point in which case
any deformation of the sample maintains the integrity of the edge states.

not the only option. The degeneracy can be lifted such that there is only a single crossing
away [rom the TRI points, as illustrated in Fig. 15.9(c). In this case, the sample cannot be
deformed (cut, for example) in any way to get rid of the single crossing point. That is, such
states are protected by topology. We can distinguish these two cases by defining the index
(TFK2008; KM2005a; KM2005b)

Ny = mmod 2, (15.36)

where Ny is the number of Kramers pairs of edge states that cross the Fermi energy. For
clarity, by m mod 2 we simply mean m + 2p, where p is any integer. If Mk is even, then
m = 0, whereas m = 1 corresponds to N odd. Since there are only two possible values for
m, we can think of m as being a Z, invariant. Z; is the group with two elements, namely 1
and 0, and hence is the simplest non-trivial group.

There is something subtle going on here which can be laid plain by considering spinful
free electrons in two dimensions. If time-reversal synunetry is present, the simplest Hamil-
tonian that can be written for electrons propagating on the edge of a (2 4 1)-dimensional
gystem is

H = pa*. {15.37)

We ask a simple question: how can such edge states be gapped? The simplest augmentation
is to add a term of the form m,o” + m,o”. However, since the mass remains invariant
under ¢ — —¢, this kind of coupling breaks TRI and hence is not allowed. To open a gap,
we need to consider more than a single pair of edge states. Consider two copies of the
system

0
H? = plgo’ = (7 :
pleg 0 po*
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