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Unit 6. Magnetic fields etc.
Maxwell Equations

Agenda

1. From Coulomb, Gauss, Biot and Savart, Ampere, Faraday Laws to
Maxwell Equations

2. Lorentz Forces and Charged Particles Accelerating

3. Electromagnetic Spectrum and Waves propagations
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Basics of Electricity and Magnetism

Coulomb’s Law
- 1 r,—r
— 2 1
F, = A G =
0 ‘rz B 1‘
€,=8.854 1012 F/m
Coulomb's torsion balance (1785) Charles Augustin de Coulomb
| - 1736-1806
PES SCIENCES, 569 F21
~ “@ ©-
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Basics of Electricity and Magnetism

=00, =, =—F
= and = — 3rd Newton Law

Electrical Field definition:

—_

- . F
E =lim— . E, = 1 Q
=0 q dre, 1’
Or for continuous distribution with charge density
Due to superposition principle the ~
field created by point charges: p(r)=dQ/dz overvolumer
. . 1 (r —
E (F)— 1 & Tr-r E,(F)= ﬁsp(r')dz'
(== —3 dre, |7 T
4”‘90 i=1 ‘ — I ‘
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Basics of Electricity and Magnetism.
Example: Electrical field generated by the dipole

_ Calculating the field at (0,y) point. Based on symmetry the
E Y field components generated by negative and positive
charges will compensate each other.

g . 1 2-COS@ cos® = d :
() 20
g--. ¢ 1. P

Are, (dY > Ame, 2 2\
@) )

Where p is dipole moment p=qd

e

In the case if y>>d ~are, Y

19 March 2024 Physics 525 5



Basics of Electricity and Magnetism
Electrical field can be presented as the gradient on scalar electrical potential V,,

E,=—grad(V,)=-VV,

Gauss Law

Introducing the electric flux as:

dd = Eooﬁdi ﬁ-normaltothe

surface unit vector,
dA — element of
surface.

After integrating over the surface

Johann Carl Friedrich Gauss
1777-1855
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Basics of Electricity and Magnetism

c1>(E)=j'Eo.ﬁ><o|A=g

<o
Introducing the electrical inductance D = g,E the equation could rewritten as:

c1>(E)=j50-ﬁdi=Q=jp(v)dv

Where p(V) is the volume distribution of the charge. Now we applying

the divergence theorem I DedA= _[Vo Ddv  (dA=fixdA)
A v

Finally, we will have the differential form of Gauss law (15t Maxwell equation)

VD=p | (V)
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Basics of Electricity and Magnetism

For magnetic field induction B assuming that no magnetic charges exist*
we can write the similar equation on the magnetic flux:

@(é):jé-dA:O
A

Here is the integral through close surface A and applying the divergence
theorem we can get the second Maxwell equation in derivative form:

V.B=0 @

*In 1931 Paul Dirac (P.A.M. Dirac, Proc. Roy. Soc. A 133, 60) did show that
magnetic charges (monopole) could exist in the nature but up to now there is no
experimental confirmation of this theory.
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Basics of Electricity and Magnetism

Biot and Savart law

—

Jean-Baptiste Biot
1774-1862

Félix Savart
1791-1841

i, ldl xr

3 =410 H /m
A 1 =7

dB =

dB(F) - magnetic field contribution to B(r) created by element of the circuit dl
carrying the current |

To calculate the net magnetic field generated by the B(F) M, j ldl xr

whole wire with current I we need to take integral B A |F|3
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Basics of Electricity and Magnetism

Ampere law
I=N
> Al — l. — current
@ Bedl = 'uOZ Ii components
=1

Applying the Stok’s theorem™ and taking bin account that

André-Marie Ampere |=Ij°ﬁd3 ( J current, i - vector perpendicular to
1775-1936 g

the element of the surface dS) we get the fourth Maxwell

equation in vacuum
VB = uJ @

* Stok’s theorem: (_f} Aedl =I VA-fidS
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Basics of Electricity and Magnetism

Ampere law. Example: calculating the magnetic field created by solenoid.

Y

Y \4

Y Y

Y \ 4

Assuming that solenoid is long enough and the field outside is zero

Bedl =0+0+0+ LB =z NI
@ A \\ 0

L L u,NI
L:BLT 22B=0 3BLI B = = u,nl
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Basics of Electricity and Magnetism
VxB = ,uoj

Maxwell found that this equation is not complete a does not account the current
of charging the capacitor. This current can be calculated as:

| = dQ Ad_E where A is the area of the capacitor plate and £,=8.854 101> F/m

dt dt

or current density J = E,— dE

dt

Now the Ampere Law and fourth Maxwell equation can be modified as:

B dE
VxB=p|J+e,— - (o)
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Basics of Electricity and Magnetism

Faraday Law Emf — electromotive force and @is
the magnetic flux

=== d® = dB.ds
TN
| —
Michael Faraday \B
1791-1867

0

B oS now we can apply the Stok’s theorem and
ot will get the differential form of the
Faraday law — third Maxwell equation

VXE:—%—? @
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Basics of Electricity and Magnetism

Faraday law. Example: transformer

Primary coil driven by the oy s O i v
Primary | = _-==- = Magnetic Secondary

primary voltage V1 and currents, R e 3 current /;
according the Faraday Law T & ‘ /T\
d@ Primary :
Vl == N 1A : e ?’ Secondary
dt ! ?, voltage V5
The same for the secondary coil A
d@ '
V,=—N,A—2
dt . o
This results in ration between V, and V, as
Because of the high x value of vV N
the iron core the magnetic flux 2 — _ 2
Is almost totally contained in V1 N .

Iron core and @1=@?

N,, N, numbers of turns of primary and
secondary coils; A — cross sectional area y

Courtes}gswﬁ\rg@ ﬂ%ook of Power Systems” , 2021 PPB/_F(_:tSﬁéSI ron core



Basics of Electricity and Magnetism

Maxwell equations describe the how the magnetic
and electric field can be generated by charges and
currents. J C Maxwell published them in 1861-1862.

James Clerk Maxwell

1831-1879
~ . oB
VD=p ) VxE=-"" (3)
—_— - 65
VB=O (2) VXH_J_I_E (4)
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Basics of Electricity and Magnetism

Maxwell equations . Electromagnetic waves.

3 5 - _ 0B ... oD
VD=p (1) VB=0 (2 VxE=-—" () VxH=J+E(4)

In vacuum p = 0 (no electric charges) and J = 0 (no current) . Consider the plane
wave propagating in Z direction. In this case E,=E,=0 and H,=H,=0

0E,  oH
—=—U z from (3)
OX ot
oH,  OE,
= - — from (4)
X OX ot
where  u= pu E=E.E,

In vacuum p, =1 and g, =1
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Basics of Electricity and Magnetism

Maxwell equations . Electromagnetic waves.

oH
aEx=_ﬂ y 6Hy _ OE, Combining these leads to:
0z ot 0z ot
ﬁ, !
8°E, 1 &°E, 0°H, 1 &°H,
ox2 v at? ox:  v? ot
1
where V=-——

Tz

Looking of the solutions was these equations in form:

E,=E, cos(wt—kx) H, =H  cos(at-kx)

From this solution we’ve got the parameters of the traveling wave:

Phase Y, =v=i _9_2_”

. p Wave vector = =
velocity VHE K v A
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Basics of Electricity and Magnetism

Maxwell equations . Electromagnetic waves.

2 2 2 2
OE,_10E, 9H,_10H, g _E cos(at—kx)

07> v? ot? oz v? at?
H, =H,  cos(wt-kx)
Loy L 1 1
" e g, Jme Jue  HT R &= &5

g is the free space permeability, € is the free space permittivity

1 1

C= = ~3.00010°m /s
JtEs  +/(8.850107%) (47 0107)

C- speed of the light in free space
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Creating a Static Magnetic Field using
different Current Carrying Coils

a. Helmholtz coils
b. Solenoids
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Helmholtz coils
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http://upload.wikimedia.org/wikipedia/commons/0/01/B_vector.helmholtz.svg

Helmholtz coils. Magnetic field along the
axis.

For single loop:

- )

4 = I a’

| B =] — v Z
© | g 2 2 2\2

1 5 (22 +a)

! . > > \ y

a For Helmholtz coils total current equals NI,
_______________ a
L—>1 —E For right hand coil and

a
N turns L—>17 +E for left hand coil
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Helmholtz coils. Magnetic field
along the axis.

| | Finally:

N 2 2 2

: -~ MoNIa a a )
© =3 37 3\’

| B A 2 (=3 1a2]?

: 0 B [(z+ 2) +a] [(z 2) +a]

. . -

V4
______ Q g )
or
N turns .
5 = uONI< 1 N 1 5
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Helmholtz coils. Distance between the coils

1. a=2R

0.04

0.03 |

0.02 |

B (a.u.)

0.01f

000 b by b b
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Helmholtz coils. Distance between the coils

1. a=1.5R

0.04
0.03 F
R [
S5 0.02f
g L
15R m
0.01f
OOO [ v vty v v v b v v b v v b s v L
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Helmholtz coils. Distance between the coils

[3. a=R]

0.04

0.03 |

0.02 |

B (a.u.)

0.01f

000 Lo o o b v vy v o by vy vy vy by vy v b
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Helmholtz coils. Distance between the coils

4. a=0.5R

0.04

0.03 |

0.02 |

B (a.u.)

0.01f

OOO Lo o Uy v v v v v o by vy vy vy o by vy v v v b
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Helmholtz coils. Distance between the coils

0.04 Look
_ 0.98 —
0.03 1 S g
: @ 0.96

m

0.94 £

0.02 |

0.92F

B (a.u.)

0.01f

0.00¢t

In the z range —a/4 + a/4 the field uniformity is better than 0.5%
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Solenoids. Magnetic field along
the axis.

Magnetic field generated by length dz:

| R
A N 2
i I3=<,uonldz a 5
' a 2 , , =
Lz (zl+a )2
s \ . JJ

Here n is number of turns per
unit length and I - solenoid
current

To calculate the magnetic field
generated by the whole length
of the solenoid we need to
perform the integrating from z,
to z,
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Solenoids. Magnetic field along the axis.

Field from current loop

H
i a K r ) \
: Z 2
- . nldz a _
> B — J ﬂO 2 . s 7
- (zf + az)E y
2, —{ | 2, n —turns per unit length

dz | - solenoid current

. : - nl % . Al 5
Making the changing (B __Ho jsm odez = o [cos 6, —cos 92:|Z
6,

- a
variables z = — L 2 2

Z Z
where c0s(8,) = L cos(0,) = :

1 2 |, 2 2 2 |, 2

Jai+ 1z Jai+17;
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Solenoids. How uniform the field is.

1.0

0.8 F

Ty
(IBZEREEN

-20 -15 -10 -05 00 05 10 15 20
Z/IR

B/B(0)

19 March 2024 Physics 525 30



Solenoids. How uniform the field is.

1.0

NSRS
NEEFERERD
N7 \

-20 -15 -10 -05 00 05 10 15 20
Z/IR

B/B(0)

L=2R
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Solenoids. How uniform the field is.

-20 -15 -10 -05 00 05 10 15 20
Z/R
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Solenoids. How uniform the field is.

1.0

] B

1 a0
A/ =N

To create the uniform field in solenoid you
need you need to wind a long coil with L>>R
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B/B(0)

Solenoids vs. Helmholtz coll.

1.0 A
/ (. — . AB
: [ Helmbholtz coil - < 6%

WA R e
N7 \

0.6

T Solenoid %>20%

0.5 B e
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Basics of Electricity and Magnetism

Lorentz Force

Lorentz force is force provided by the electrical field E and
magnetic field B on the moving with velocity y/ charged

particle carrying the charge (]
F=qE+qVxB

Motion of the charge in the magnetic field

Hendrik Antoon Lorentz
1853-1928

N Velocity V is perpendicular to the vector of magnetic

B field B. Resulting force = will work as centripetal

v force and the trajectory of the particle will be a circle

®
and the radius I' of it can be calculated as:
mv? mv
QgvB=——;r=—
r qB
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Basics of Electricity and Magnetism

Vi \7 In case if the particle velocity is not
JT exactly perpendicular to the direction of
\7” the magnetic field the trajectory of the
+~ particle will be a spiral with radius
/ . MV, and it will move
> - with the velocity \/
B gB YV
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Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. X-rays tube.

Nobel prize in Physics 1901 W
""In recognition of the extraordlnary services he
has rendered by the discovery of the remarkable

rays subsequently named after him"'

Wilhelm Conrad Réntgen
1846-1923

Courtesy’of Wikipedia Physics 525 37



Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. X-rays tube.

V,,, Vnv~highvoltage, typically 30-150kV

O O
-+
e )
Cathode — e
heating filament ] N vnne _‘
. % electrons /‘\ N
- /f / /:H 7
anode
cathode target X-rays

W Richardson equation: J,

J, =AT 2 exp (_j cathode emission current, W —

et kT work function of the cathode

1879-1959 material, T — temperature, A -
constant

Couvtasyroh Wikipedia Physics 525 38



Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

“Drift Tube Linac” 1927

¢ e £ o

Z acceleration direction

— — >
I I
Rolf Widerge i gap !
1902-1996 i !

The acceleration works in between the electrodes in gap. Increment of the

L OE,
Kinetic energy dW can be calculated as: dW =q . and total energy earned

by particle traveling across the gap:  Aw = qj a(;EZdz = AV
Z

Courtesy of Wikipedit Physics 525
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Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

I—i
>
‘ Lo ' ! 3 Vsin(ax)
q E, '—|—' S 7
LI —_— -— ,
o, E— memmmmmmm 2Cceleration direction

! i
1

Now we have several steps of acceleration (two gaps in this figure) and we
applying now ac electrical field Vsin(at) and AW=qVsin(at) and it means that not
all particle will be accelerated but only those which entered the gap in proper
phase. The next step of acceleration will be done while traveling across the next gap
and to be successfully accelerated the particles should come the second gap in
correct phase and this imply the proper distance L in between two gaps. The time
of traveling to the next gap t; should equal to half period of the applied rf voltage:

. =

I T _ h , Where V;is the speed of the approaching the next gap
2 o Vv,
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Basics of Eleetﬂelty and Magaetism. Applications.

Lorentz Force and char article accelerators. Linear accelerator.

Vsin(ax)

LJ.'_|__|_ZO

>

acceleration direction
I
oo E—

The time of tra\'/eling to the next gap t; should equal to half period of the
applied rf voltage:
T #m© L

t. = 2 g = V—' , Where V; is the speed of the approaching the next gap

), 7r
L =—vV, ; and in relativistic case V, = ﬂ C where C is speed of the light

in avacuum and 5 = /1——— / ; 7Y, - Lorentz factor; E, - rest energy

E — total energy E=E,+W; W kinetic energy of accelerated particle
For electron E;=511 keV
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Basics of Electricity and Magnetism. Applications.

Lorentz Force and charged particle accelerators. Linear accelerator.

. L E = E Tl I o Vsinat
I eees S ———
V(x)—) / \\ // “‘*----h___}c
., = e+ = o +
el ) | :
S l&z -> c3 = Ca

G A Vi)

Courtesy of WikipEdit Physics 525 42



Basics of Electricity and Magnetism. Applications.

Generating od electromagnetic waves of different frequencies.

frequency wavelength photon energy
v (hertz) . A (centimetres) hv (electron volts)
f ' 10-15 i
— 1025 | 1010
i - gamma rays ] !
L 10 _' : violet
| 1020 10 105+ indigo
L | | | blue
- X-rays .
L = y 1 green
L - ultraviolet light 5 | J
-ﬁ—m_zzmzzzzi: visible light | | yellow
; - orange
i -infrared rays | | red
- radar waves i ]
L1010 . 1= ]
[ microwaves i 10-5
- T television waves I :
N -radio waves . §
L 105 D= i
i 10 10 ] 10-10 -
L 4 10— i
10 10-15—

© Encyclopeedia Britannica, Inc.
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Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Gunn Diode.
a b

X
by Conduction
0.4  band

y

N » ; i
« 1 -
| (111) (000) [1.42 ooy oo ¥
J.B.Gunn —/\

1928-2008

Energy (eV)

Current

Valence band

Eg Electric field

Energy band structure of GaAs showing the band gap and the
g_N_g energy separations between the different valleys and (b) current
versus electric field characteristics of the bulk material showing
the threshold field Eth above which negative differential
conductance appears
Applications:

airborne collision avoidance system
Car radar detector

Frequency range: 10GHz=+1THz
Output power ~200mV

19 March 2024 Courtesy ¢f “Springer Handbook of Semiconductor Devices”, Springef 2023



Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Klystron.

— 3/
(‘ - 30
Russell Varian Sigurd Varian [
1898-1959 1901-1961 ! i
//,:’:f;/;\,/’,t, 33
Sl
2,242,275

Patented May 20, 1941

2,242,215
ELECTRICAL TRANSLATING SYSTEM AND
METHOD
Russell H, Varian, Stanford University, Calif., as-
signor to The Board of Trustees of The Leland
Stanford Junlor University, Stanford Uni-
versity, Calif., a corporation of California
10¢ o9xx
Physics 525

102Y Qaslal Wa

UNITED STATES PATENT OFFICE

nnlisatian Natahas 11
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Basics of Electricity and Magnetism. Applications.

Generating of electromagnetic waves. Microwaves. Klystron.

Output Cavity
. Gap
PRESeY=y D Region  Eiectron
] e =l Bunches

\&tmn Gun

Cavity
Focusing Repeller
Electrode

Electron Gun

Drift Space -

Repeller Voltage

May Be Modulated Here
’% Input __t|||l| + Output + ’I|I|'_ ~
Bea.rln Relpellt;r U
Voltage Voltage
Single transit klystron Reflection klystron

Advantages: well defined frequencies,
high power output
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Basics of Electricity and Magnetism. Applications.

K25 Generating of electromagnetic waves. Microwaves. Klystron.

iy
OF Power |

[ vours

250
Repler vottage

7
Repler vottage

GENERAL CHARACTERISTICS

Frequency Range 8,500 to 9,660 MHz
Cathode Oxide-coated,

indirectly heated

Heater Voltage 6.3\olts :
Heater Current 0.44 Amperes
Power output 25 MW 400 kW Kklystron used for spacecraft

communication at the Canberra Deep Space
Communications Complex.
courtesy of Wikipedia
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Basics of Electricity and Magnetism

Generating of electromagnetic waves. Microwaves. Magnetron.

Output coupling
loop

Resonating cavity

Copper
anode block

Oxide-coated
cathode

"— Leads to cathode
| & heater

Resonant cavity magnetron high-power
high-frequency oscillator

19 March 2024 Physics 525

Microwave oven
magnetron; typical
power 0.7-1.5kW

courtesy of Wikipedia
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Quadrupole static electrical
charges configuration with
charges locations:

al2,al2, 0 -1
-a/l2,a/l2,0 +1
-al2,-a/l2,0 -1
al2,-a/l2,0 -1

Calculate the electrical field
distribution along the lines:
al2,a/2,z; -al2,a/2,z and 0,0, z

19 March 2024

Homework

Physics 525
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