Introduction to Fluid Dynamics

Yuk Tung Liu University of Illinois at Urbana-Champaign April 2024

Convective Derivatives and Partial Derivatives

Partial time derivative $\frac{\partial q}{\partial t}$: rate of change of q(t,x,y,z) at a fixed location.

Convective time derivative $\frac{dq}{dt}$: rate of change of q along a path.

$$\frac{dq}{dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x}\frac{dx}{dt} + \frac{\partial q}{\partial y}\frac{dy}{dt} + \frac{\partial q}{\partial z}\frac{dz}{dt} = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial x}v_x + \frac{\partial q}{\partial y}v_y + \frac{\partial q}{\partial z}v_z$$

$$= \frac{\partial q}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} q$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}$$

Continuity Equation I

Net mass flow rate in the x-direction:

$$\Delta \dot{m}_{x} = \rho \left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) v_{x} \left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) \Delta y \Delta z$$

$$-\rho \left(x + \Delta x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) v_{x} \left(x + \Delta x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2} \right) \Delta y \Delta z$$

$$= -\frac{\partial}{\partial x} (\rho v_{x}) \Delta x \Delta y \Delta z$$

$$= -\frac{\partial}{\partial x} (\rho v_{x}) \Delta V$$

Continuity Equation II

Similarly, net mass flow rate in the y and z directions are

$$\Delta \dot{m}_y = -\frac{\partial}{\partial y}(\rho v_y)\Delta V$$
 , $\Delta \dot{m}_z = -\frac{\partial}{\partial z}(\rho v_z)\Delta V$

Total mass flowing into the volume/time is

$$\Delta \dot{m} = \frac{\partial}{\partial t} (\rho \Delta V) = -\left[\frac{\partial}{\partial x} (\rho v_x) + \frac{\partial}{\partial y} (\rho v_y) + \frac{\partial}{\partial z} (\rho v_z) \right] \Delta V = -\overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) \Delta V$$

$$\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \cdot (\rho \vec{v}) = 0$$

This is called the continuity equation.

Continuity Equation III

Suppose we follow the motion of the fluid.

Recall:
$$\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + \vec{v} \cdot \vec{\nabla} \rho$$

$$\frac{d\rho}{dt} = -\overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) + \overrightarrow{v} \cdot \overrightarrow{\nabla} \rho = -\rho \overrightarrow{\nabla} \cdot \overrightarrow{v}$$

$$\frac{d\rho}{dt} + \rho \overrightarrow{\nabla} \cdot \overrightarrow{v} = 0$$

For incompressible fluid, $d\rho/dt=0$. Hence $\overrightarrow{\nabla}\cdot\overrightarrow{v}=0$.

Integral Form of Continuity Equation

$$\begin{split} M &= \int_{V} \rho dV \\ \frac{dM}{dt} &= \int_{V} \frac{\partial \rho}{\partial t} dV = -\int_{V} \overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) dV \\ &= -\oint_{\partial V} \rho \overrightarrow{v} \cdot d\overrightarrow{S} \end{split}$$

Rate of increase in mass inside a volume V = net mass flow into the volume per unit time.

Example 1: Flow Tube

Consider air flowing from a tube with cross-sectional area A_1 into a region with cross-sectional area A_2 .

In steady air flow, dM/dt = 0.

$$\rho v_1 A_1 = \rho v_2 A_2$$

$$v_2 = \frac{A_1}{A_2} v_1$$

Example 2: Water Leak

There is a small hole at the bottom of a container and water leaks out from the hole at speed *v*.

The water level *y* decreases slowly.

$$\frac{dM}{dt} = \frac{d(\rho V)}{dt} = -\rho v A_h$$

$$\frac{dV}{dt} = A(y)\dot{y}$$

A(y): cross-sectional area at y

$$\Rightarrow \dot{y} = -\frac{A_h}{A(y)}v$$

Momentum Equation

Net force associate with pressure in *x*-direction:

$$\Delta f_x = P\left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right) \Delta y \Delta z - P\left(x + \Delta x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right) \Delta y \Delta z$$

$$= -\frac{\partial P}{\partial x} \Delta x \Delta y \Delta z$$

$$= -\frac{\partial P}{\partial x} \Delta V$$
Similarly, $\Delta f_y = -\frac{\partial P}{\partial y} \Delta V$, $\Delta f_z = -\frac{\partial P}{\partial z} \Delta V$

$$z \left(x + \Delta x, y + \frac{\Delta y}{2}, z + \frac{\Delta z}{2}\right)$$

Total net force associated with pressure:

$$\Delta \vec{f} = -\left(\frac{\partial P}{\partial x}\hat{x} + \frac{\partial P}{\partial y}\hat{y} + \frac{\partial P}{\partial z}\hat{z}\right)\Delta V = -\overrightarrow{\nabla}P\Delta V$$

Momentum Equation (cont)

In addition to pressure, gravity also acts on the fluid:

$$\Delta \vec{f} = - \overrightarrow{\nabla} P \Delta V + (\rho \Delta V) \vec{g}$$

From Newton's second law:

$$(\rho \Delta V) \frac{d\vec{v}}{dt} = - \overrightarrow{\nabla} P \Delta V + \rho \vec{g} \Delta V$$

$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} = -\frac{\overrightarrow{\nabla} P}{\rho} + \vec{g}$$

This is also called Euler's equation.

It describes the conservation of momentum of an ideal fluid (i.e. without viscosity).

The Meaning of $\vec{v} \cdot \vec{\nabla} \vec{v}$

$$\vec{v} \cdot \vec{\nabla} \vec{v} = v_x \frac{\partial \vec{v}}{\partial x} + v_y \frac{\partial \vec{v}}{\partial y} + v_z \frac{\partial \vec{v}}{\partial z}$$

$$= \left(v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) \hat{x} + \left(v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) \hat{y} + \left(v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) \hat{z}$$

If \vec{v} is represented by a row vector, $\overrightarrow{\nabla} \vec{v}$ represented by a 3×3 matrix, $\vec{v} \cdot \overrightarrow{\nabla} \vec{v}$ can be represented by a row vector by

$$\vec{v} \cdot \vec{\nabla} \vec{v} = (v_x \quad v_y \quad v_z) \begin{pmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_y}{\partial x} & \frac{\partial v_z}{\partial x} \\ \frac{\partial v_x}{\partial y} & \frac{\partial v_y}{\partial y} & \frac{\partial v_z}{\partial y} \\ \frac{\partial v_x}{\partial z} & \frac{\partial v_y}{\partial z} & \frac{\partial v_z}{\partial z} \end{pmatrix}$$

Hydrostatics

Momentum equation:
$$\frac{d\vec{v}}{dt} = -\frac{\vec{\nabla}P}{\rho} + \vec{g}$$

Hydrostatics: $\vec{v} = 0 \implies \overrightarrow{\nabla} P = \rho \vec{g}$

Pressure gradient is parallel to $\vec{g} \Rightarrow$ surface of constant P (isobar) is perpendicular to \vec{g} .

$$0 = \overrightarrow{\nabla} \times \overrightarrow{\nabla} P = \overrightarrow{\nabla} \rho \times \vec{g}$$

 \Rightarrow density gradient is parallel to $\vec{g} \Rightarrow$ surface of constant ρ is perpendicular to \vec{g} .

Let $\vec{g} = g\hat{z}$ (\hat{z} points download), $P = P(z), \rho = \rho(z)$.

$$\overrightarrow{\nabla}P = \frac{dP}{dz}\hat{z} = \rho g\hat{z}$$

Hydrostatics (cont)

$$\frac{dP}{dz} = \rho g$$

$$P(z) = \int \rho(z)gdz$$

Consider a cylinder with cross-sectional area A and height z.

$$P(z) = \frac{1}{A} \left(\int \rho(z) A dz \right) g = \frac{M_f(z)g}{A}$$

Pressure at depth z is the weight of the fluid per unit area above z.

For incompressible fluid, $\rho(z) = \rho$ is constant,

$$P(z) = \rho g z$$

Mercury Barometer

$$P = \rho_{\rm Hg}gh$$

Standard atmospheric pressure = 101kPa ≈760 mmHg

Archimedes' Principle

Consider an object floating stationary in a fluid.

Buoyant force acting on the object:

$$\overrightarrow{F}_{\text{buoy}} = -\int_{\text{surface}} Pd\overrightarrow{A}$$

Imagine removing the body and replacing it by fluid.

Hydrostatic eq:
$$\overrightarrow{\nabla}P = \rho \overrightarrow{g}$$

$$\int_{V} \overrightarrow{\nabla} P dV = \int \rho \vec{g} dV \quad \Rightarrow \quad \int_{\text{surface}} P d\overrightarrow{A} = M_{f} \vec{g}$$

 M_f : mass of the fluid displaced by the object.

Archimedes' principle: $\overrightarrow{F}_{\text{buoy}} = -M_f \overrightarrow{g}$ (buoyant force = weight of fluid displaced by the object)

Tip of the Iceberg

Density of ice $\rho_i = 920 \text{ kg/m}^3$

Density of sea water $\rho_w = 1027 \text{ kg/m}^3$

 V_a : volume of iceberg above water

V: total volume of iceberg

In static state, weight of iceberg = buoyant force

$$\rho_i Vg = \rho_w (V - V_a)g$$

$$\frac{V_a}{V} = \frac{\rho_w - \rho_i}{\rho_w} = 0.10$$

Credit: clipground.com

Only 10% of the iceberg is above the sea water!

Earth's Atmosphere I

Earth's pressure is closely approximated by the hydrostatic equilibrium.

Let
$$\vec{g} = -g\hat{z}$$
 (\hat{z} points upward).

$$\frac{dP}{dz} = -\rho g \qquad \text{ideal gas law: } P = nkT = \frac{\rho}{M}RT$$

$$R = N_A k = 8.31 \text{J/(mol K)} = \text{gas constant}$$

M: molar mass of air = 0.02896 kg/mol (78% N_2 , 21% O_2 , 0.9% Ar and small amount of other gases)

$$\frac{dP}{dz} = -\frac{Mg}{RT}P \quad \Rightarrow \quad \frac{dP}{P} = -\frac{Mg}{RT}dz$$

$$P(z) = P_0 \exp\left(-\int_0^z \frac{Mg}{RT(z')}dz'\right)$$

 P_0 : pressure at z=0.

Earth's Atmosphere II

* If $T = T_0 = \text{constant (isothermal)}$

$$P(z) = P_0 e^{-Mgz/RT_0}$$
 (isothermal)

* If $T = T_0 - Lz$ (L is called the temperature lapse rate):

$$P(z) = P_0 \left(1 - \frac{Lz}{T_0}\right)^{Mg/RL}$$
 (lapse)

Recall:

$$\lim_{k \to \infty} \left(1 + \frac{x}{k} \right)^k = \lim_{k \to \infty} \exp \left[k \ln \left(1 + \frac{x}{k} \right) \right] = \lim_{k \to \infty} \exp \left(k \cdot \frac{x}{k} \right) = e^x$$

The lapse equation reduces to the isothermal equation in the limit $L \to 0$.

Earth's Atmosphere III

More realistic atmospheric model divides the atmosphere into several layers. Each lapse has its own temperature lapse rate:

$$P(z) = P_b \left[1 - \frac{L_b(z - z_b)}{T_b} \right]^{Mg/RL_b}$$

 P_b : pressure at the bottom of layer b.

 T_b : temperature at the bottom of layer b.

 L_b : temperature lapse rate in layer b.

 z_b : altitude at the bottom of layer b.

Credit: NOAA

Earth's Atmosphere IV

Sub- script b	Geopotential height above mean z_b Sea level (z)		Static pressure P_b		Standard temperature (K)	Temperature lapse rate	
						L_b	
	(m)	(ft)	(Pa)	(inHg)	T_b	(K/m)	(K/ft)
0	0	0	101 325.00	29.92126	288.15	0.0065	0.0019812
1	11 000	36,089	22 632.10	6.683245	216.65	0.0	0.0
2	20 000	65,617	5474.89	1.616734	216.65	-0.001	-0.0003048
3	32 000	104,987	868.02	0.2563258	228.65	-0.0028	-0.00085344
4	47 000	154,199	110.91	0.0327506	270.65	0.0	0.0
5	51 000	167,323	66.94	0.01976704	270.65	0.0028	0.00085344
6	71 000	232,940	3.96	0.00116833	214.65	0.002	0.0006096

Credit: Wikimedia (https://en.wikipedia.org/wiki/Barometric_formula)

DPS 310 Pressure Sensor

According to Adafruit, their DPS 310 pressure sensor can measure the change in pressure to an accuracy of 0.2 Pa.

$$\frac{dP}{dz} = -\frac{Mg}{RT}P \qquad \Rightarrow \qquad \Delta P = -\frac{MgP}{RT}\Delta z$$

Credit: Adafruit

 $\Delta P = 0.2$ Pa corresponds to $\Delta z = 1.7$ cm for M = 0.02896 kg/mol, P = 101 kPa, and T = 300 K.

Class Demonstration

Gather the P and T readings from the 4 sensors and use them to calculate the altitudes of the 3 sensors in the tube relative to the sensor on the home board.

108

4 DPS 310 sensors: 1 on the home board, 3 inside the flow tube

Energy Equation

Momentum equation:
$$\frac{d\vec{v}}{dt} = -\frac{\overrightarrow{\nabla}P}{\rho} + \vec{g}$$

$$\vec{v} \cdot \frac{d\vec{v}}{dt} = -\frac{\vec{v} \cdot \overrightarrow{\nabla} P}{\rho} + \vec{v} \cdot \vec{g} \qquad , \qquad \vec{v} \cdot \frac{d\vec{v}}{dt} = \frac{1}{2} \frac{d}{dt} (\vec{v} \cdot \vec{v}) = \frac{d}{dt} \left(\frac{\vec{v}^2}{2} \right)$$

 $\vec{g} = - \overrightarrow{\nabla} U$, U = gh is gravitational potential, h is height from a reference point.

Gravity is static near Earth's surface, $\partial U/\partial t = 0$.

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} + \vec{v} \cdot \vec{\nabla} U = \vec{v} \cdot \vec{\nabla} U = -\vec{v} \cdot \vec{g}$$

$$\Rightarrow \frac{d}{dt} \left(\frac{1}{2} v^2 + U \right) + \frac{\vec{v} \cdot \vec{\nabla} P}{\rho} = 0$$

First Law of Thermodynamics

Consider a fluid element in a small volume *V*.

Mass $m = \rho V$, internal energy is E. First law of thermodynamics: dE = dQ - PdV

dQ is the amount of heat added to the volume. In the absence of heat generation and heat flow, dQ=0. The system is said to be adiabatic and $\frac{dE}{dt} = -P\frac{dV}{dt}$. Divide the equation by the mass $m = \rho V$ and write w = E/m (specific internal energy).

$$\frac{dw}{dt} = -\frac{P}{\rho V}\frac{dV}{dt} = -P\frac{d}{dt}\left(\frac{V}{\rho V}\right) = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) = -\frac{d}{dt}\left(\frac{P}{\rho}\right) + \frac{1}{\rho}\frac{dP}{dt}$$

$$\frac{d}{dt}\left(w + \frac{P}{\rho}\right) = \frac{1}{\rho}\frac{dP}{dt} = \frac{1}{\rho}\frac{\partial P}{\partial t} + \frac{\vec{v} \cdot \vec{\nabla}P}{\rho}$$

$$\frac{\overrightarrow{v} \cdot \overrightarrow{\nabla} P}{\rho} = \frac{d}{dt} \left(w + \frac{P}{\rho} \right) - \frac{1}{\rho} \frac{\partial P}{\partial t}$$

Volume moves with the fluid element $m = \rho V = (\rho + d\rho)(V + dV)$

Bernoulli's equation

Previous slides:

$$\frac{d}{dt}\left(\frac{1}{2}v^2 + U\right) + \frac{\vec{v} \cdot \vec{\nabla}P}{\rho} = 0 \quad , \quad \frac{\vec{v} \cdot \vec{\nabla}P}{\rho} = \frac{d}{dt}\left(w + \frac{P}{\rho}\right) - \frac{1}{\rho}\frac{\partial P}{\partial t}$$

Combine these two equations:

$$\frac{d}{dt} \left(\frac{1}{2} v^2 + \frac{P}{\rho} + U + w \right) = \frac{1}{\rho} \frac{\partial P}{\partial t}$$

In steady flow, $\partial P/\partial t = 0$, the resulting equation is called Bernoulli's equation.

$$\frac{d}{dt}\left(\frac{1}{2}v^2 + \frac{P}{\rho} + U + w\right) = 0$$

Recall:
$$\frac{dw}{dt} = -P\frac{d}{dt}\left(\frac{1}{\rho}\right) = 0$$
 for incompressible fluid $\Rightarrow \frac{d}{dt}\left(\frac{1}{2}v^2 + \frac{P}{\rho} + U\right) = 0$

Bernoulli's equation (cont)

$$b = \frac{1}{2}v^2 + \frac{P}{\rho} + gh + w$$

$$\frac{db}{dt} = 0 \Rightarrow b = \text{constant along a } streamline$$

Figure 4.8: Flow through a rapidly-expanding pipe.

Figure credit: J.M. McDonough, <u>Lectures In Elementary Fluid</u> <u>Dynamics: Physics, Mathematics and Applications</u>

Bernoulli's equation doesn't apply to turbulent flows.

- * Turbulent flows are usually not steady
- * No well-defined streamlines
- * Viscosity is important

Example

Water is flowing out of a rectangular tank from the bottom of a small hole. How long does it take to excavate the water from the tank?

Apply Bernoulli's equation at the top and at the hole:

$$\frac{1}{2}\dot{y}^2 + \frac{P}{\rho} + gy = \frac{1}{2}v^2 + \frac{P}{\rho} \implies v^2 - \dot{y}^2 = 2gy$$

Previously, we find
$$\dot{y} = -\frac{A_h}{A}v$$

$$\Rightarrow \left(1 - \frac{A_h^2}{A^2}\right) v^2 = 2gy ,$$

$$v = \sqrt{2gy} \left(1 - \frac{A_h^2}{A^2}\right)^{-1/2} \approx \sqrt{2gy} \quad \text{for } A_h \ll A$$

This is the free-fall speed from y. As the water level drops, the speed also decreases.

Example (cont)

Rate of change of water level: $\dot{y} = -\frac{A_h}{A}v = -\frac{A_h}{A}\sqrt{2gy}$

$$\frac{dy}{\sqrt{y}} = -\frac{A_h}{A}\sqrt{2g}dt$$

Let $y_0 = y(t = 0)$. Integrate both sides:

$$\int_{y_0}^{y} \frac{dy'}{\sqrt{y'}} = -\frac{A_h}{A} \sqrt{2g} t \qquad , \qquad 2\sqrt{y} - 2\sqrt{y_0} = -\frac{A_h}{A} \sqrt{2g} t$$

$$y(t) = \left(\sqrt{y_0} - \frac{A_h}{A}\sqrt{\frac{g}{2}}t\right)^2$$

Setting
$$y(T) = 0$$
 gives $T = \frac{A}{A_h} \sqrt{\frac{2y_0}{g}} = \frac{A}{A_h} \times \text{free-fall time.}$

Example (cont)

$$T = \frac{A}{A_h} \sqrt{\frac{2y_0}{g}}$$

For
$$y_0$$
=0.3 m, A/A_h = 40, $T \approx 10$ s.

Bernoulli's equation only applies to steady flow.

It's still a good approximation if the rate of change is sufficient slow, which requires $T\gg$ dynamical time scales.

- (1) Time associated with pressure ~ time for sound to travel y_0 : $\tau = y_0/c_s$. Sound speed in water ≈ 1500 m/s, $\tau \approx 0.0002$ s $\ll T$.
- (2) Time associated with gravity ~ free-fall time. $T = A/A_h \times$ free-fall time = 40 free-fall time. Relative error in estimated $T \sim 1/40 = 2.5 \%$.

Vorticity

Vorticity is defined as $\overrightarrow{\omega} = \overrightarrow{\nabla} \times \overrightarrow{v}$. In Cartesian coordinates,

$$\overrightarrow{\omega} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{x} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{y} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial x}\right) \hat{z}$$

It describes the local spinning motion of fluid.

Consider the velocity in the fluid near a vortex looks like this:

The velocity field is given by $\vec{v} = \overrightarrow{\Omega} \times \vec{r}$, where $\overrightarrow{\Omega}$ is a constant vector.

In cylindrical coordinates with $\overrightarrow{\Omega}=\Omega\hat{z}$, we have $v_\phi=\Omega r$ and $v_r=v_z=0$.

$$\overrightarrow{\omega} = \frac{1}{r} \frac{\partial}{\partial r} (r v_{\phi}) \hat{z} = 2\Omega \hat{z}$$

The fluid is irrotational if $\overrightarrow{\omega} = 0$.

Vector Derivatives in Cylindrical Coordinates

CYLINDRICAL
$$dl = dr \, \hat{r} + r \, d\phi \, \hat{\phi} + dz \, \hat{z}; \, d\tau = r \, dr \, d\phi \, dz$$

Gradient. $\nabla t = \frac{\partial t}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial t}{\partial \phi} \hat{\phi} + \frac{\partial t}{\partial z} \hat{z}$

Divergence. $\nabla \cdot \mathbf{v} = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial v_\phi}{\partial \phi} + \frac{\partial v_z}{\partial z}$

Curl. $\nabla \times \mathbf{v} = \left[\frac{1}{r} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{r} + \left[\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} \right] \hat{\phi}$
 $+ \frac{1}{r} \left[\frac{\partial}{\partial r} (rv_\phi) - \frac{\partial v_r}{\partial \phi} \right] \hat{z}$

Laplacian. $\nabla^2 t = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial t}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$

Circulation

- Circulation is closely related to vorticity
- Circulation of a fluid around a closed loop is defined as $C = \oint \vec{v} \cdot d\vec{l}$
- Stoke's theorem:

$$C = \int_{S} (\overrightarrow{\nabla} \times \overrightarrow{v}) \cdot d\overrightarrow{S} = \int_{S} \overrightarrow{\omega} \cdot d\overrightarrow{S}$$

• If the flow is irrotational, $\overrightarrow{\omega} = 0 \implies C = 0$.

Credit: Wikipedia

Shearing

Shearing can occur when neighboring fluid moves with different velocities.

In the presence of viscosity, the shear motion develops a viscous stress that opposes the motion.

The stress acting on a fluid element can be characterized by a stress tensor $\stackrel{\smile}{T}$.

Simple Model of Viscosity

$$f_1^{\text{vis}} = \mu \frac{\partial v_x(x, y + dy/2, z)}{\partial y} dxdz$$

$$f_2^{\text{vis}} = -\mu \frac{\partial v_x(x, y - dy/2, z)}{\partial y} dxdz$$

 μ : coefficient of shear viscosity

Net force
$$f_x^{\mathrm{vis}} = f_1^{\mathrm{vis}} + f_2^{\mathrm{vis}} = \mu \frac{\partial^2 v_x}{\partial y^2} dx dy dz = \mu \frac{\partial^2 v_x}{\partial y^2} dV$$

Adding the contributions from the other two directions:

$$f_x^{\text{vis}} = \mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) dV = \mu \nabla^2 v_x dV$$

The y and z-components of the viscous force are obtained by changing v_x to v_y and v_z .

Viscous force: $\vec{f}^{\text{vis}} = \mu \, \nabla^2 \vec{v} dV$

Stress Tensor

• Stress tensor can be represented by a 3×3 matrix. In Cartesian coordinates,

$$\overrightarrow{T} = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix}$$

• Force acting on a small surface $d\overrightarrow{A} = \hat{n}dA$ is given by

$$d\overrightarrow{F} = \overleftrightarrow{T} \cdot d\overrightarrow{A} = dA(T_{xx}n_x + T_{xy}n_y + T_{xz}n_z)\hat{x} + dA(T_{yx}n_x + T_{yy}n_y + T_{yz}n_z)\hat{y} + dA(T_{zx}n_x + T_{zy}n_y + T_{zz}n_z)\hat{z}$$

$$= dA \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix} \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$$

• It can be shown that \overleftarrow{T} must be symmetry: $T_{ij}=T_{ji}$

Force on Fluid

$$\overrightarrow{F} = -\int_{S} \overleftarrow{T} \cdot d\overrightarrow{A}$$

Note that negative sign since $d\overrightarrow{A}$ points outward.

Divergence theorem:

$$\overrightarrow{F} = -\int_{V} \overrightarrow{\nabla} \cdot \overrightarrow{T} dV$$

Force per unit volume: $\vec{f} = -\overrightarrow{\nabla} \cdot \overrightarrow{T}$

Viscous Stress Tensor The stress tensor of an ideal fluid is $\overrightarrow{T}=P\overrightarrow{G}$, where \overrightarrow{G} is called the metric tensor and is represented by an identity matrix in Cartesian coordinates. In Cartesian coordinates, $\stackrel{\smile}{T}$ is represented by a diagonal matrix

$$\overrightarrow{T} = \begin{pmatrix} P & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{pmatrix}$$

Force acting on a small area is $d\overrightarrow{F} = \overleftrightarrow{T} \cdot d\overrightarrow{A} = Pd\overrightarrow{A}$. Force is isotropic (same magnitude in every direction). Force per unit volume is

$$\vec{f} = -\overrightarrow{\nabla} \cdot \overrightarrow{T} = -\frac{\partial P}{\partial x} \hat{x} - \frac{\partial P}{\partial y} \hat{y} - \frac{\partial P}{\partial z} \hat{z} = -\overrightarrow{\nabla} P$$

In the presence of viscosity, $\overrightarrow{T}=P\overrightarrow{G}+\overrightarrow{\tau}$, $\overrightarrow{\tau}$ is called the viscous stress tensor.

Viscous force acting on a small ares is $d\overrightarrow{F}_{\rm vis} = \overrightarrow{\tau} \cdot d\overrightarrow{A}$

Viscous force per unit volume is $\vec{f}_{\rm vis} = -\overrightarrow{\nabla} \cdot \overrightarrow{\tau}$

Momentum Equation with Viscosity

Momentum equation:
$$(\rho dV) \frac{d\vec{v}}{dt} = -dV \vec{\nabla} \cdot \vec{T} + (\rho dV) \vec{g}$$

$$\rho \frac{d\vec{v}}{dt} = - \overrightarrow{\nabla} \cdot \overrightarrow{T} + \rho \vec{g}$$

$$\overrightarrow{T} = P\overrightarrow{G} + \overrightarrow{\tau} \qquad \Rightarrow \qquad \overrightarrow{\nabla} \cdot \overrightarrow{T} = \overrightarrow{\nabla} P + \overrightarrow{\nabla} \cdot \overrightarrow{\tau}$$

$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} = -\frac{\overrightarrow{\nabla} P}{\rho} + \vec{g} + \frac{1}{\rho} \overrightarrow{\nabla} \cdot \overrightarrow{\tau}$$

Need an expression for $\overrightarrow{\tau}$ that depends on the velocity field \overrightarrow{v} .

 $\overrightarrow{\tau} \neq 0$ only for non-uniform \overrightarrow{v} , but $\overrightarrow{\tau} = 0$ if the fluid is rigidly rotating.

 $\overrightarrow{\tau}$ is symmetric, but $\overrightarrow{\nabla} \overrightarrow{v}$ is not. Cannot express $\overrightarrow{\tau}$ in terms of $\overrightarrow{\nabla} \overrightarrow{v}$ directly.

Decompose
$$\overrightarrow{\nabla} \overrightarrow{v}$$
 into 3 components: $(\overrightarrow{\nabla} \overrightarrow{v})_{ij} = \frac{\partial v_j}{\partial x_i} = \frac{1}{3} \theta \delta_{ij} + r_{ij} + \sigma_{ij}$

Expansion:
$$\theta = Tr(\overrightarrow{\nabla} \overrightarrow{v}) = \overrightarrow{\nabla} \cdot \overrightarrow{v}$$

Anti-symmetric part of
$$\overrightarrow{\nabla} \overrightarrow{v}$$
: $r_{ij} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j} \right)$

Symmetric trace-free part of
$$\overrightarrow{\nabla} \overrightarrow{v} : \sigma_{ij} = \frac{1}{2} \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right) - \frac{1}{3} \theta \delta_{ij}$$

Physical Meaning of θ

Consider a small fluid element occupying a small volume ΔV and mass $\Delta m = \rho \Delta V$.

Moving with the mass, we have

$$0 = \frac{d}{dt}(\rho\Delta V) = \Delta V \frac{d\rho}{dt} + \rho \frac{d\Delta V}{dt}$$

Continuity equation: $\frac{d\rho}{dt} = -\rho \overrightarrow{\nabla} \cdot \overrightarrow{v} = -\rho \theta$

$$-\rho\theta\Delta V + \rho\frac{d\Delta V}{dt} = 0$$

$$\theta = \frac{1}{\Delta V} \frac{d\Delta V}{dt}$$

\overrightarrow{r} and $\overrightarrow{\sigma}$

$$r_{xx} = r_{yy} = r_{zz} = 0$$
, $r_{xy} = -r_{yx} = \frac{1}{2} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) = \frac{1}{2} (\overrightarrow{\nabla} \times \overrightarrow{v})_z = \frac{1}{2} \omega_z$

Similarly,
$$r_{yz}=-r_{zy}=\frac{1}{2}\omega_x$$
 , $r_{zx}=-r_{xz}=\frac{1}{2}\omega_y$

$$\overrightarrow{r} = \frac{1}{2} \begin{pmatrix} 0 & \omega_z & -\omega_y \\ -\omega_z & 0 & \omega_x \\ \omega_y & -\omega_x & 0 \end{pmatrix}$$

 \overrightarrow{r} describes the local rotation of fluid.

 $\overrightarrow{\tau}$ is symmetry but \overrightarrow{r} is anti-symmetric. $\overrightarrow{\tau}$ cannot depend on \overrightarrow{r} .

 $\stackrel{\longleftrightarrow}{\sigma}$ is symmetric and trace-free. It describes the shear motion of fluid.

Bulk and Shear Viscosity

Simple model of viscosity: $\overrightarrow{\tau} = -\zeta \theta \overrightarrow{G} - 2\mu \overrightarrow{\sigma}$ or in component form:

$$\tau_{ij} = -\zeta \theta \delta_{ij} - 2\mu \sigma_{ij}$$

 ζ : coefficient of bulk viscosity, μ : coefficient of shear viscosity.

Bulk viscosity resists the fluid's expansion and contraction.

Shear viscosity resists the fluid's shear motion.

In general, bulk viscosity << shear viscosity.

Another quantity is kinematic viscosity $\nu = \mu/\rho$

Navier-Strokes Equation

$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} \right) = - \overrightarrow{\nabla} P + \rho \vec{g} - \overrightarrow{\nabla} \cdot \overleftrightarrow{\tau} \quad , \quad \overleftrightarrow{\tau} = -2\mu \overleftrightarrow{\sigma}$$

$$\tau_{ij} = -\mu \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right) - \frac{2}{3}\mu\theta\delta_{ij} = -\mu \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right) \text{ for incompressible fluid } (\theta = 0).$$

$$\overrightarrow{\nabla} \cdot \overleftrightarrow{\tau} = \sum_{i=1}^{3} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{3} \tau_{ij} \hat{x}_j \right) = -\mu \sum_{i=1}^{3} \sum_{j=1}^{3} \left(\frac{\partial^2 v_i}{\partial x_i \partial x_j} + \frac{\partial^2 v_j}{\partial x_i^2} \right) \hat{x}_j$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial^{2} v_{i}}{\partial x_{i} \partial x_{j}} \hat{x}_{j} = \sum_{j=1}^{3} \hat{x}_{j} \frac{\partial}{\partial x_{j}} \left(\sum_{i=1}^{3} \frac{\partial v_{i}}{\partial x_{i}} \right) = \overrightarrow{\nabla} (\overrightarrow{\nabla} \cdot \overrightarrow{v}) = 0 \text{ for incompressible fluid.}$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial^{2} v_{j}}{\partial x_{i}^{2}} \hat{x}_{j} = \sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}} \left(\sum_{j=1}^{3} v_{j} \hat{x}_{j} \right) = \sum_{i=1}^{3} \frac{\partial^{2} \vec{v}}{\partial x_{i}^{2}} = \nabla^{2} \vec{v}$$

Navier-Strokes Equation for Incompressible Fluid

For incompressible fluid, $\overrightarrow{\nabla} \cdot \overleftrightarrow{\tau} = -\mu \nabla^2 \overrightarrow{v}$.

$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} \right) = - \overrightarrow{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$

Or

$$\frac{d\vec{v}}{dt} = \frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} = -\frac{\overrightarrow{\nabla} P}{\rho} + \vec{g} + \nu \nabla^2 \vec{v}$$

 $\nu = \mu/\rho$: kinematic viscosity

Evolution of Circulation

Circulation:
$$\Gamma(t) = \oint_{C(t)} \vec{v} \cdot d\vec{x} = \int_{S(t)} \vec{\omega} \cdot d\vec{S}$$

$$\frac{d\Gamma}{dt} = \oint_{C(t)} \frac{d}{dt} (\vec{v} \cdot d\vec{x}) = \oint_{C(t)} \frac{d\vec{v}}{dt} \cdot d\vec{x} + \oint_{C(t)} \vec{v} \cdot d\left(\frac{d\vec{x}}{dt}\right)$$

$$\oint_{C(t)} \vec{v} \cdot d\left(\frac{d\vec{x}}{dt}\right) = \oint_{C(t)} \vec{v} \cdot d\vec{v} = \frac{1}{2} \oint_{C(t)} dv^2 = 0$$

Navier-Stokes equation:
$$\frac{d\vec{v}}{dt} = -\frac{\overrightarrow{\nabla}P}{\rho} + \vec{g} - \frac{1}{\rho}\overrightarrow{\nabla} \cdot \overrightarrow{\tau}$$

$$\frac{d\Gamma}{dt} = -\oint_{C(t)} \frac{\overrightarrow{\nabla}P}{\rho} \cdot d\vec{x} + \oint_{C(t)} \vec{g} \cdot d\vec{x} - \oint_{C(t)} \frac{1}{\rho} (\overrightarrow{\nabla} \cdot \overleftrightarrow{\tau}) \cdot d\vec{x}$$

Kelvin's Circulation Theorem

$$\oint_{C(t)} \vec{g} \cdot d\vec{x} = \int_{S(t)} (\vec{\nabla} \times \vec{g}) \cdot d\vec{S} = -\int_{S(t)} (\vec{\nabla} \times \vec{\nabla} U) \cdot d\vec{S} = 0$$

$$-\oint_{C(t)} \frac{\overrightarrow{\nabla} P}{\rho} \cdot d\vec{x} = -\int_{S(t)} \left(\overrightarrow{\nabla} \times \frac{\overrightarrow{\nabla} P}{\rho} \right) \cdot d\vec{S} = \int_{S(t)} \frac{\overrightarrow{\nabla} \rho \times \overrightarrow{\nabla} P}{\rho^2} \cdot d\vec{S}$$

If the fluid is barotropic: $P = P(\rho)$, $\overrightarrow{\nabla} P = \frac{dP}{d\rho} \overrightarrow{\nabla} \rho$ and so $\overrightarrow{\nabla} \rho \times \overrightarrow{\nabla} P = 0$.

$$\frac{d\Gamma}{dt} = 0$$
 for barotropic, inviscid flow.

Water flowing through Cylindrical Pipe I

Continuity equation:
$$\frac{\partial \rho}{\partial t} + \overrightarrow{\nabla} \cdot (\rho \overrightarrow{v}) = 0$$

In cylindrical coordinates,

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (\rho v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\rho v_\theta)}{\partial \theta} + \frac{\partial (\rho v_z)}{\partial z} = 0$$

Looking for a steady solution $(\partial \rho/\partial t = 0)$, axisymmetric and $v_r = v_\theta = 0$

$$\Rightarrow \frac{\partial v_z}{\partial z} = 0 , \Rightarrow v_z = v_z(r)$$

Navier-Stokes equation:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} \right) = - \overrightarrow{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$

Set $\partial \vec{v}/\partial t = 0$ and write $P = \rho gH + P_1$, where H is height from a reference point.

Water flowing through Cylindrical Pipe II

$$P = \rho g H + P_1 \quad \Rightarrow \quad \overrightarrow{\nabla} P = \rho g \hat{H} + \overrightarrow{\nabla} P_1 = -\rho \vec{g} + \overrightarrow{\nabla} P_1$$

Navier-Stokes equation becomes $\rho \vec{v} \cdot \overrightarrow{\nabla} \vec{v} = -\overrightarrow{\nabla} P_1 + \mu \nabla^2 \vec{v}$

Gravity is eliminated by the ρgH term. In the following, I will drop the subscript 1. So P means P_1 (pressure - ρgH).

r-component:

$$\rho \left(v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_\theta^2}{r} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial P}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial (rv_r)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial^2 v_r}{\partial z^2} \right]$$

$$\Rightarrow \frac{\partial P}{\partial r} = 0 , P = P(z)$$

z-component:
$$\rho \left(v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial P}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$

Water flowing through Cylindrical Pipe III

$$\frac{dP}{dz} = \frac{\mu}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right)$$

LHS is function of z, RHS is function of r.

$$\Rightarrow \frac{dP}{dz} = \frac{\mu}{r} \frac{d}{dr} \left(r \frac{dv_z}{dr} \right) = k = \text{constant}$$

Let L be the length of the pipe. Integrating dP/dz = k from z = 0 to z = L gives

 $\Delta P = kL$ or $k = -\Delta P/L$, where $\Delta P = P(0) - P(L)$ is the pressure difference between the two ends of the pipe.

$$\frac{\mu}{r}\frac{d}{dr}\left(r\frac{dv_z}{dr}\right) = -\frac{\Delta P}{L} \quad \Rightarrow \quad r\frac{dv_z}{dr} = -\frac{\Delta P}{\mu L}\int rdr = -\frac{\Delta P}{2\mu L}r^2 + C_1$$

$$v_z = \int \left(-\frac{\Delta P}{2\mu L} r + \frac{C_1}{r} \right) dr = -\frac{\Delta P}{4\mu L} r^2 + C_1 \ln r + C_2$$

Water flowing through Cylindrical Pipe IV

$$v_z(r) = -\frac{\Delta P}{4\mu L}r^2 + C_1 \ln r + C_2$$

Boundary conditions of v_7 :

(1) finite at
$$r = 0 \implies C_1 = 0$$
,

(2)
$$v_z = 0$$
 at the wall at $r = R$ \Rightarrow $C_2 = \frac{\Delta P}{4\mu L}R^2$

$$v_z(r) = \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right)$$
 , $v_z(0) = \frac{\Delta P}{4\mu L} R^2$

Average flow velocity is

$$\langle v_z \rangle = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right) r dr d\theta = \frac{\Delta P}{2\mu L} \int_0^R \left(r - \frac{r^3}{R^2} \right) dr$$

$$\langle v_z \rangle = \frac{\Delta P R^2}{8\mu L} = \frac{1}{2} v_z(0)$$

Water flowing through Cylindrical Pipe V

$$v_z(r) = \frac{\Delta P}{4\mu L} R^2 \left(1 - \frac{r^2}{R^2} \right)$$

$$\langle v_z \rangle = \frac{\Delta P}{8\mu L} R^2$$

Flow rate:

$$Q = \pi R^2 \langle v_z \rangle = \frac{\pi \Delta P R^4}{8\mu L}$$

This is called the Hagen-Poiseuille equation.

Reynolds Number and Turbulence

Navier-Stokes equation:
$$\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \overrightarrow{\nabla} \vec{v} \right) = - \overrightarrow{\nabla} P + \rho \vec{g} + \mu \nabla^2 \vec{v}$$

$$\frac{\text{inertia}}{\text{viscosity}} = \frac{\rho |d\vec{v}/dt|}{\mu |\nabla^2 \vec{v}|} \sim \frac{\rho u/T}{\mu u/L^2} \sim \frac{\rho u/(L/u)}{\mu u/L^2} = \frac{\rho uL}{\mu}$$

Reynolds number: Re = $\frac{\rho u L}{\mu}$

L: characteristic length scale, u: characteristic speed. T = L/u: characteristic time.

Low Reynolds number → flow dominated by viscosity → laminar

High Reynolds number → flow dominated by inertia → turbulence

Experiments show that that pipe flow only remains laminar up to Re $\sim 10^3-10^5$, depending on the smooth of pipe's entrance and roughness of its walls.

Flow around Sphere with Different Re's

Darcy's Friction Factor and Head Loss

Hagen-Poiseuille equation:
$$\Delta P = \frac{8\mu L U_{avg}}{R^2} = \frac{32\mu L U_{avg}}{D^2}$$

Here D=2R is the pipe diameter, $U_{avg}=\langle v_z\rangle$ is the average flow velocity in the pipe.

In the absence of viscosity, Bernoulli's equation:

$$\frac{1}{2}\rho v_1^2 + P_1 + \rho g h_1 = \frac{1}{2}\rho v_2^2 + P_2 + \rho g h_2$$

For a horizontal and steady flow, $\Delta P = P_1 - P_2 = 0$.

In the presence of viscosity, $\Delta P \propto L$. Define a dimensionless parameter called *Darcy's friction factor*:

$$\frac{\Delta P}{L} = f \frac{\frac{1}{2} \rho U_{avg}^2}{D} \quad \text{or} \quad f = \frac{\Delta P}{\frac{1}{2} \rho U_{avg}^2} \left(\frac{D}{L}\right)$$

Head loss is defined as
$$h_f \equiv \frac{\Delta P}{\rho g} \quad \Rightarrow \quad h_f = f \frac{LU_{avg}^2}{2Dg}$$
 (Darcy-Weisbach equation)

Darcy's Friction Factor and Head Loss (cont)

For pipes with non-circular cross section, f and h_f are defined by replacing the pipe diameter D by the *hydraulic diameter* $D_h \equiv \frac{4A}{P}$.

A: cross-sectional area of the pipe, P: perimeter of the pipe.

For a duct with rectangular cross section with height h and width w, $D_h = \frac{4wh}{2(w+h)}$.

For laminar flow in a cylindrical pipe, Hagen-Poiseuille equation gives

$$f = \frac{64\mu}{\rho U_{avg}D} = \frac{64}{\text{Re}}$$

where the Reynolds number is calculated by $\mathrm{Re} = \frac{\rho U_{avg} D}{\mu}$.

In the presence of turbulence, f also depends on the surface roughness of the pipe ϵ .

Moody Diagram

 ϵ : surface roughness of pipe

Credit: J.M. McDonough, Lectures In Elementary Fluid Dynamics: Physics, Mathematics and Applications

Colebrook Formula

For $4 \times 10^3 < \text{Re} < 10^8$, Darcy's friction factor may be computed by the Colebrook formula

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\epsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$

f needs to be solved iteratively.

The calculated values of *f* differ from experimental results < 15%.

Moody diagram calculated by the Colebrook formula

Velocity Profile

Laminar flow:
$$u = U_c \left(1 - \frac{r^2}{R^2} \right)$$

Turbulent flow:
$$u = U_c \left(1 - \frac{r}{R}\right)^{1/n}$$

$$n = 6$$
 when Re $\approx 2 \times 10^4$
 $n = 10$ when Re $\approx 3 \times 10^6$

At high Re, velocity profile is relatively flat, but decreases rapidly to 0 near the wall.

Practical Head Loss Equation

Bernoulli's equation $\frac{P_1}{\rho}+\frac{1}{2}v_1^2+gz_1=\frac{P_2}{\rho}+\frac{1}{2}v_2^2+gz_2 \text{ is replaced by:}$

$$\frac{P_1}{\rho g} + \alpha_1 \frac{U_1^2}{2g} + z_1 + h_{pump} = \frac{P_2}{\rho g} + \alpha_2 \frac{U_2^2}{2g} + z_2 + h_f + h_{turbine}$$

 U_1, U_2 : average flow speeds, α_1, α_2 : correction factor for KE.

 $\alpha=2$ for laminar flows, $\alpha\approx 1$ for turbulent flows.

 h_f : head loss caused by viscosity,

 h_{pump} : head gain by a pump (if present),

 $h_{turbine}$: head loss by driving a turbine (if present).

Example 1

Oil, with $\rho=900~{\rm kg/m^3}$, and $\nu=10^{-5}~{\rm m^2/s}$, flows at $Q=0.2~{\rm m^3/s}$ through 500 m of 0.2m-diameter cast iron pipe (roughness $\epsilon=0.26$ mm). Determine the head loss and pressure drop if the pipe slopes down at 10° .

Flow speeds
$$U_1=U_2=\frac{Q}{\pi D^2/4}=6.37$$
 m/s

Re =
$$\frac{\rho UD}{\mu} = \frac{UD}{\nu} = 1.27 \times 10^5$$

The flow is turbulent. Using Colebrook formula with $\epsilon/D = 0.26/200$ and the above Re, I get f = 0.0227. The head loss is given by the Darcy-Weisback equation:

$$h_f = f \frac{LU^2}{2Dg} = 117 \text{m.} \ \alpha \approx 1 \text{ for turbulent flows.} \ \frac{P_1}{\rho g} + \frac{U_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{U_2^2}{2g} + z_2 + h_f$$

$$\frac{P_1 - P_2}{\rho g} = h_f - (z_1 - z_2) = 117\text{m} - (500\text{m})\sin 10^\circ = 30\text{m}.$$

Pressure drop $\Delta P = \rho g(30\text{m}) = 2.65 \times 10^5 \text{ Pa}.$

Example 2

The pipe in the previous example is connected to a horizontal pipe of length 100 m. The pipe is also made of cast iron but with diameter D=0.25m. Suppose the flow rate remains the same (Q=0.2m³/s). Calculate the head loss and pressure difference in the second pipe.

$$U_3 = \frac{Q}{\pi D^2/4} = 4.07 \text{ m/s}$$

Re =
$$\frac{U_3D}{\nu}$$
 = 1.02 × 10⁵ , ϵ/D = 0.26/250.

The Colebrook formula gives f = 0.0223.

Head loss:
$$h_f = f \frac{LU_3^2}{2D\varrho} = 7.54 \text{ m}.$$

Horizontal pipe
$$\Rightarrow z_2 = z_3$$
, $\frac{P_2}{\rho g} + \frac{U_2^2}{2g} = \frac{P_3}{\rho g} + \frac{U_3^2}{2g} + h_f$, $U_2 = 6.37$ m/s from previous calculation.

$$\Rightarrow P_2 - P_3 = \rho g h_f + \rho (U_3^2 - U_2^2)/2 = 5.6 \times 10^4 \text{ Pa}$$

