Introduction to Fluid Dynamics

Yuk Tung Liu
University of Illinois at Urbana-Champaign
April 2024

Convective Derivatives and Partial Derivatives

Partial time derivative $\frac{\partial q}{\partial t}$: rate of change of $q(t, x, y, z)$ at a fixed location.
Convective time derivative $\frac{d q}{d t}$: rate of change of q along a path.
$\frac{d q}{d t}=\frac{\partial q}{\partial t}+\frac{\partial q}{\partial x} \frac{d x}{d t}+\frac{\partial q}{\partial y} \frac{d y}{d t}+\frac{\partial q}{\partial z} \frac{d z}{d t}=\frac{\partial q}{\partial t}+\frac{\partial q}{\partial x} v_{x}+\frac{\partial q}{\partial y} v_{y}+\frac{\partial q}{\partial z} v_{z}$

$$
=\frac{\partial q}{\partial t}+\vec{v} \cdot \vec{\nabla} q
$$

$$
\frac{d}{d t}=\frac{\partial}{d t}+\vec{v} \cdot \vec{\nabla}
$$

Continuity Equation I

Net mass flow rate in the x-direction:

$$
\begin{aligned}
\Delta \dot{m}_{x} & =\rho\left(x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) v_{x}\left(x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) \Delta y \Delta z \\
& -\rho\left(x+\Delta x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) v_{x}\left(x+\Delta x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) \Delta y \Delta z \\
& =-\frac{\partial}{\partial x}\left(\rho v_{x}\right) \Delta x \Delta y \Delta z \\
& =-\frac{\partial}{\partial x}\left(\rho v_{x}\right) \Delta V
\end{aligned}
$$

Continuity Equation II

Similarly, net mass flow rate in the y and z directions are

$$
\Delta \dot{m}_{y}=-\frac{\partial}{\partial y}\left(\rho v_{y}\right) \Delta V \quad, \quad \Delta \dot{m}_{z}=-\frac{\partial}{\partial z}\left(\rho v_{z}\right) \Delta V
$$

Total mass flowing into the volume/time is

$$
\begin{gathered}
\Delta \dot{m}=\frac{\partial}{\partial t}(\rho \Delta V)=-\left[\frac{\partial}{\partial x}\left(\rho v_{x}\right)+\frac{\partial}{\partial y}\left(\rho v_{y}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)\right] \Delta V=-\vec{\nabla} \cdot(\rho \vec{v}) \Delta V \\
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot(\rho \vec{v})=0
\end{gathered}
$$

This is called the continuity equation.

Continuity Equation III

Suppose we follow the motion of the fluid.

Recall: $\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\vec{v} \cdot \vec{\nabla} \rho$

$$
\begin{array}{r}
\frac{d \rho}{d t}=-\vec{\nabla} \cdot(\rho \vec{v})+\vec{v} \cdot \vec{\nabla} \rho=-\rho \vec{\nabla} \cdot \vec{v} \\
\frac{d \rho}{d t}+\rho \vec{\nabla} \cdot \vec{v}=0
\end{array}
$$

For incompressible fluid, $d \rho / d t=0$. Hence $\vec{\nabla} \cdot \vec{v}=0$.

Integral Form of Continuity Equation

$$
\begin{aligned}
M & =\int_{V} \rho d V \\
\frac{d M}{d t} & =\int_{V} \frac{\partial \rho}{\partial t} d V=-\int_{V} \vec{\nabla} \cdot(\rho \vec{v}) d V \\
& =-\oint_{\partial V} \rho \vec{v} \cdot d \vec{S}
\end{aligned}
$$

Rate of increase in mass inside a volume $V=$ net mass flow into the volume per unit time.

Example 1: Flow Tube

Consider air flowing from a tube with cross-sectional area A_{1} into a region with cross-sectional area A_{2}. In steady air flow, $d M / d t=0$.

$$
\begin{gathered}
\rho v_{1} A_{1}=\rho v_{2} A_{2} \\
v_{2}=\frac{A_{1}}{A_{2}} v_{1}
\end{gathered}
$$

Example 2: Water Leak

There is a small hole at the bottom of a container and water leaks out from the hole at speed v.

The water level y decreases slowly.

$$
\frac{d M}{d t}=\frac{d(\rho V)}{d t}=-\rho v A_{h}
$$

A_{h} : area of the hole. $V=$ Volume of water inside the container.

$$
\begin{array}{lll}
\frac{d V}{d t}=A(y) \dot{y} & & A(y): \text { cross-sectio } \\
& \Rightarrow \quad \dot{y}=-\frac{A_{h}}{A(y)} v
\end{array}
$$

$$
A(y): \text { cross-sectional area at } y
$$

Momentum Equation

Net force associate with pressure in x-direction:

$$
\begin{aligned}
\Delta f_{x} & =P\left(x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) \Delta y \Delta z-P\left(x+\Delta x, y+\frac{\Delta y}{2}, z+\frac{\Delta z}{2}\right) \Delta y \Delta z \\
& =-\frac{\partial P}{\partial x} \Delta x \Delta y \Delta z \\
& =-\frac{\partial P}{\partial x} \Delta V
\end{aligned}
$$

Similarly, $\Delta f_{y}=-\frac{\partial P}{\partial y} \Delta V, \quad \Delta f_{z}=-\frac{\partial P}{\partial z} \Delta V$

Total net force associated with pressure:
$\Delta \vec{f}=-\left(\frac{\partial P}{\partial x} \hat{x}+\frac{\partial P}{\partial y} \hat{y}+\frac{\partial P}{\partial z} \hat{z}\right) \Delta V=-\vec{\nabla} P \Delta V$

Momentum Equation (cont)

In addition to pressure, gravity also acts on the fluid:
$\Delta \vec{f}=-\vec{\nabla} P \Delta V+(\rho \Delta V) \vec{g}$
From Newton's second law:
$(\rho \Delta V) \frac{d \vec{v}}{d t}=-\vec{\nabla} P \Delta V+\rho \vec{g} \Delta V$

$$
\frac{d \vec{v}}{d t}=\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}
$$

This is also called Euler's equation.
It describes the conservation of momentum of an ideal fluid (i.e. without viscosity).

The Meaning of $\vec{v} \cdot \vec{\nabla} \vec{v}$

$\vec{v} \cdot \vec{\nabla} \vec{v}=v_{x} \frac{\partial \vec{v}}{\partial x}+v_{y} \frac{\partial \vec{v}}{\partial y}+v_{z} \frac{\partial \vec{v}}{\partial z}$

$$
=\left(v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+v_{z} \frac{\partial v_{x}}{\partial z}\right) \hat{x}+\left(v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+v_{z} \frac{\partial v_{y}}{\partial z}\right) \hat{y}+\left(v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+v_{z} \frac{\partial v_{z}}{\partial z}\right) \hat{z}
$$

If \vec{v} is represented by a row vector, $\vec{\nabla} \vec{v}$ represented by a 3×3 matrix, $\vec{v} \cdot \vec{\nabla} \vec{v}$ can be represented by a row vector by

Hydrostatics

Momentum equation: $\quad \frac{d \vec{v}}{d t}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}$

Hydrostatics: $\vec{v}=0 \quad \Rightarrow \quad \vec{\nabla} P=\rho \vec{g}$
Pressure gradient is parallel to $\vec{g} \Rightarrow$ surface of constant P (isobar) is perpendicular to \vec{g}. $0=\vec{\nabla} \times \vec{\nabla} P=\vec{\nabla} \rho \times \vec{g}$
\Rightarrow density gradient is parallel to $\vec{g} \Rightarrow$ surface of constant ρ is perpendicular to \vec{g}.
Let $\vec{g}=g \hat{z} \quad$ (\hat{z} points download), $P=P(z), \rho=\rho(z)$.
$\vec{\nabla} P=\frac{d P}{d z} \hat{z}=\rho g \hat{z}$

Hydrostatics (cont)

$\frac{d P}{d z}=\rho g$
$P(z)=\int \rho(z) g d z$
Consider a cylinder with cross-sectional area A and height z.

$P(z)=\frac{1}{A}\left(\int \rho(z) A d z\right) g=\frac{M_{f}(z) g}{A}$
Pressure at depth z is the weight of the fluid per unit area above z.
For incompressible fluid, $\rho(z)=\rho$ is constant,
$P(z)=\rho g z$

Mercury Barometer

$$
P=\rho_{\mathrm{Hg}} g h
$$

Standard atmospheric pressure $=101 \mathrm{kPa} \approx 760 \mathrm{mmHg}$

Archimedes' Principle

Consider an object floating stationary in a fluid.
Buoyant force acting on the object:
$\vec{F}_{\text {buoy }}=-\int_{\text {surface }} P d \vec{A}$
Imagine removing the body and replacing it by fluid.

Pressure $P(z)$ and density $\rho(z)$ remain the same.
Hydrostatic eq: $\vec{\nabla} P=\rho \vec{g}$
$\int_{V} \vec{\nabla} P d V=\int \rho \vec{g} d V \Rightarrow \int_{\text {surface }} P d \vec{A}=M_{f} \vec{g}$
M_{f} : mass of the fluid displaced by the object.

Archimedes' principle: $\vec{F}_{\text {buoy }}=-M_{f} \vec{g}$ (buoyant force $=$ weight of fluid displaced by the object)

Tip of the Iceberg

Density of ice $\rho_{i}=920 \mathrm{~kg} / \mathrm{m}^{3}$
Density of sea water $\rho_{w}=1027 \mathrm{~kg} / \mathrm{m}^{3}$
V_{a} : volume of iceberg above water
V : total volume of iceberg
In static state, weight of iceberg = buoyant force

$$
\begin{aligned}
& \rho_{i} V g=\rho_{w}\left(V-V_{a}\right) g \\
& \frac{V_{a}}{V}=\frac{\rho_{w}-\rho_{i}}{\rho_{w}}=0.10
\end{aligned}
$$

Credit: clipground.com

Only 10% of the iceberg is above the sea water!

Earth's Atmosphere I

Earth's pressure is closely approximated by the hydrostatic equilibrium.
Let $\vec{g}=-g \hat{z} \quad$ (\hat{z} points upward).
$\frac{d P}{d z}=-\rho g$

$$
\text { ideal gas law: } P=n k T=\frac{\rho}{M} R T
$$

$R=N_{A} k=8.31 \mathrm{~J} /(\mathrm{mol} \mathrm{K})=$ gas constant
M: molar mass of air $=0.02896 \mathrm{~kg} / \mathrm{mol}\left(78 \% \mathrm{~N}_{2}, 21 \% \mathrm{O}_{2}, 0.9 \% \mathrm{Ar}\right.$ and small amount of other gases $)$

$$
\begin{aligned}
& \frac{d P}{d z}=-\frac{M g}{R T} P \quad \Rightarrow \quad \frac{d P}{P}=-\frac{M g}{R T} d z \\
& P(z)=P_{0} \exp \left(-\int_{0}^{z} \frac{M g}{R T\left(z^{\prime}\right)} d z^{\prime}\right)
\end{aligned}
$$

$P o$: pressure at $z=0$.

Earth's Atmosphere II

* If $T=T_{0}=$ constant (isothermal)

$$
P(z)=P_{0} e^{-M g z / R T_{0}}
$$

(isothermal)

* If $T=T_{0}-L z$ (L is called the temperature lapse rate):

$$
P(z)=P_{0}\left(1-\frac{L z}{T_{0}}\right)^{M g / R L} \quad \text { (lapse) }
$$

Recall:
$\lim _{k \rightarrow \infty}\left(1+\frac{x}{k}\right)^{k}=\lim _{k \rightarrow \infty} \exp \left[k \ln \left(1+\frac{x}{k}\right)\right]=\lim _{k \rightarrow \infty} \exp \left(k \cdot \frac{x}{k}\right)=e^{x}$
The lapse equation reduces to the isothermal equation in the limit $L \rightarrow 0$.

Earth's Atmosphere III

More realistic atmospheric model divides the atmosphere into several layers. Each lapse has its own temperature lapse rate:
$P(z)=P_{b}\left[1-\frac{L_{b}\left(z-z_{b}\right)}{T_{b}}\right]^{M g / R L_{b}}$
P_{b} : pressure at the bottom of layer b.
T_{b} : temperature at the bottom of layer b.
L_{b} : temperature lapse rate in layer b.
z_{b} : altitude at the bottom of layer b.

Credit: NOAA

Earth's Atmosphere IV

Subscript b	Geopotential height above mean z_{b} Sea level (z)		Static pressureP_{b}		Standard temperature (K) T_{b}	Temperature lapse rateL_{b}	
	(m)	(ft)	(Pa)	(inHg)		(K/m)	(K/ft)
0	0	0	$\begin{gathered} 101 \\ 325.00 \end{gathered}$	29.92126	288.15	0.0065	0.0019812
1	11000	36,089	$\begin{gathered} 22 \\ 632.10 \end{gathered}$	6.683245	216.65	0.0	0.0
2	20000	65,617	5474.89	1.616734	216.65	-0.001	-0.0003048
3	32000	104,987	868.02	0.2563258	228.65	-0.0028	-0.00085344
4	47000	154,199	110.91	0.0327506	270.65	0.0	0.0
5	51000	167,323	66.94	0.01976704	270.65	0.0028	0.00085344
6	71000	232,940	3.96	0.00116833	214.65	0.002	0.0006096

Credit: Wikimedia (https://en.wikipedia.org/wiki/Barometric_formula)

DPS 310 Pressure Sensor

According to Adafruit, their DPS 310 pressure sensor can measure the change in pressure to an accuracy of 0.2 Pa.

$$
\frac{d P}{d z}=-\frac{M g}{R T} P \quad \Rightarrow \quad \Delta P=-\frac{M g P}{R T} \Delta z
$$

Credit: Adafruit
$\Delta P=0.2$ Pa corresponds to $\Delta z=1.7 \mathrm{~cm}$ for $M=0.02896 \mathrm{~kg} / \mathrm{mol}$, $P=101 \mathrm{kPa}$, and $T=300 \mathrm{~K}$.

Class Demonstration

4 DPS 310 sensors:

 1 on the home board, 3 inside the flow tube

Using the Ventilator Flowmeter as an Altitude meter
\bigcirc Simulated data \bigcirc Real data

t0: Sun Jan 022000 00:47:27 GMT-0600 (Central Standard Time) Black: h1, Red: h2, Blue: h3

Number of points: 103
Latest time: Sun Jan 022000 00:49:16 GMT-0600 (Central Standard Time)

Gather the P and T readings from the 4 sensors and use them to calculate the altitudes of the 3 sensors in the tube relative to the sensor on the home board.

Energy Equation

Momentum equation: $\frac{d \vec{v}}{d t}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}$
$\vec{v} \cdot \frac{d \vec{v}}{d t}=-\frac{\vec{v} \cdot \vec{\nabla} P}{\rho}+\vec{v} \cdot \vec{g} \quad, \quad \vec{v} \cdot \frac{d \vec{v}}{d t}=\frac{1}{2} \frac{d}{d t}(\vec{v} \cdot \vec{v})=\frac{d}{d t}\left(\frac{v^{2}}{2}\right)$
$\vec{g}=-\vec{\nabla} U, U=g h$ is gravitational potential, h is height from a reference point.
Gravity is static near Earth's surface, $\partial U / \partial t=0$.

$$
\begin{gathered}
\frac{d U}{d t}=\frac{\partial U}{\partial t}+\vec{v} \cdot \vec{\nabla} U=\vec{v} \cdot \vec{\nabla} U=-\vec{v} \cdot \vec{g} \\
\Rightarrow \quad \frac{d}{d t}\left(\frac{1}{2} v^{2}+U\right)+\frac{\vec{v} \cdot \vec{\nabla} P}{\rho}=0
\end{gathered}
$$

First Law of Thermodynamics

Consider a fluid element in a small volume V.
Mass $m=\rho V$, internal energy is E. First law of thermodynamics: $d E=d Q-P d V$
$d Q$ is the amount of heat added to the volume. In the absence of heat generation and heat flow, $d Q=0$. The system is said to be adiabatic and $\frac{d E}{d t}=-P \frac{d V}{d t}$. Divide the equation by the mass $m=\rho V$ and write $w=E / m$ (specific internal energy).

$$
\begin{aligned}
& \frac{d w}{d t}=-\frac{P}{\rho V} \frac{d V}{d t}=-P \frac{d}{d t}\left(\frac{V}{\rho V}\right)=-P \frac{d}{d t}\left(\frac{1}{\rho}\right)=-\frac{d}{d t}\left(\frac{P}{\rho}\right)+\frac{1}{\rho} \frac{d P}{d t} \\
& \frac{d}{d t}\left(w+\frac{P}{\rho}\right)=\frac{1}{\rho} \frac{d P}{d t}=\frac{1}{\rho} \frac{\partial P}{\partial t}+\frac{\vec{v} \cdot \vec{\nabla} P}{\rho}
\end{aligned}
$$

$$
\frac{\vec{v} \cdot \vec{\nabla} P}{\rho}=\frac{d}{d t}\left(w+\frac{P}{\rho}\right)-\frac{1}{\rho} \frac{\partial P}{\partial t}
$$

Volume moves with the fluid element

$$
m=\rho V=(\rho+d \rho)(V+d V)
$$

Bernoulli's equation

Previous slides:

$$
\frac{d}{d t}\left(\frac{1}{2} v^{2}+U\right)+\frac{\vec{v} \cdot \vec{\nabla} P}{\rho}=0 \quad, \quad \frac{\vec{v} \cdot \vec{\nabla} P}{\rho}=\frac{d}{d t}\left(w+\frac{P}{\rho}\right)-\frac{1}{\rho} \frac{\partial P}{\partial t}
$$

Combine these two equations:
$\frac{d}{d t}\left(\frac{1}{2} v^{2}+\frac{P}{\rho}+U+w\right)=\frac{1}{\rho} \frac{\partial P}{\partial t}$
In steady flow, $\partial P / \partial t=0$, the resulting equation is called Bernoulli's equation.

$$
\frac{d}{d t}\left(\frac{1}{2} v^{2}+\frac{P}{\rho}+U+w\right)=0
$$

Recall: $\frac{d w}{d t}=-P \frac{d}{d t}\left(\frac{1}{\rho}\right)=0$ for incompressible fluid $\Rightarrow \frac{d}{d t}\left(\frac{1}{2} v^{2}+\frac{P}{\rho}+U\right)=0$

Bernoulli's equation (cont)

Figure 4.8: Flow through a rapidly-expanding pipe.
Bernoulli's equation doesn't apply to turbulent flows.

* Turbulent flows are usually not steady
* No well-defined streamlines
* Viscosity is important

Figure credit: J.M. McDonough, Lectures In Elementary Fluid Dynamics: Physics, Mathematics and Applications

Example

Water is flowing out of a rectangular tank from the bottom of a small hole. How long does it take to excavate the water from the tank?

Apply Bernoulli's equation at the top and at the hole:
$\frac{1}{2} \dot{y}^{2}+\frac{P}{\rho}+g y=\frac{1}{2} v^{2}+\frac{P}{\rho} \quad \Rightarrow \quad v^{2}-\dot{y}^{2}=2 g y$
Previously, we find $\dot{y}=-\frac{A_{h}}{A} v$
A_{h} : area of the hole, A : cross-sectional area of the tank.
$\Rightarrow\left(1-\frac{A_{h}^{2}}{A^{2}}\right) v^{2}=2 g y \quad$,
$v=\sqrt{2 g y}\left(1-\frac{A_{h}^{2}}{A^{2}}\right)^{-1 / 2} \approx \sqrt{2 g y} \quad$ for $A_{h} \ll A$

Free fall from y :

$$
\frac{1}{2} m v^{2}=m g y
$$

$$
\Rightarrow \quad v=\sqrt{2 g y}
$$

This is the free-fall speed from y. As the water level drops, the speed also decreases.

Example (cont)

Rate of change of water level: $\dot{y}=-\frac{A_{h}}{A} v=-\frac{A_{h}}{A} \sqrt{2 g y}$
$\frac{d y}{\sqrt{y}}=-\frac{A_{h}}{A} \sqrt{2 g} d t$
Let $y_{0}=y(t=0)$. Integrate both sides:
$\int_{y_{0}}^{y} \frac{d y^{\prime}}{\sqrt{y^{\prime}}}=-\frac{A_{h}}{A} \sqrt{2 g} t \quad, \quad 2 \sqrt{y}-2 \sqrt{y_{0}}=-\frac{A_{h}}{A} \sqrt{2 g} t$
$y(t)=\left(\sqrt{y_{0}}-\frac{A_{h}}{A} \sqrt{\frac{g}{2}} t\right)^{2}$
Setting $y(T)=0$ gives $T=\frac{A}{A_{h}} \sqrt{\frac{2 y_{0}}{g}}=\frac{A}{A_{h}} \times$ free-fall time.

Free fall from y_{0} :
$s=\frac{1}{2} g t^{2}$
$s=y_{0}$ when
$t=\sqrt{2 y_{0} / g}$

Example (cont)

$$
T=\frac{A}{A_{h}} \sqrt{\frac{2 y_{0}}{g}}
$$

For $y_{0}=0.3 \mathrm{~m}, A / A_{h}=40, T \approx 10 \mathrm{~s}$.
Bernoulli's equation only applies to steady flow.
It's still a good approximation if the rate of change is sufficient slow,
 which requires $T \gg$ dynamical time scales.

Two dynamical time scales:
(1) Time associated with pressure \sim time for sound to travel y_{0} : $\tau=y_{0} / c_{s}$. Sound speed in water $\approx 1500 \mathrm{~m} / \mathrm{s}, \tau \approx 0.0002 \mathrm{~s} \ll T$.
(2) Time associated with gravity \sim free-fall time.
$T=A / A_{h} \times$ free-fall time $=40$ free-fall time.
Relative error in estimated $T \sim 1 / 40=2.5 \%$.

Vorticity

Vorticity is defined as $\vec{\omega}=\vec{\nabla} \times \vec{v}$. In Cartesian coordinates,
$\vec{\omega}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial x}\right) \hat{z}$
It describes the local spinning motion of fluid.
Consider the velocity in the fluid near a vortex looks like this:
The velocity field is given by $\vec{v}=\vec{\Omega} \times \vec{r}$, where $\vec{\Omega}$ is a constant vector.
In cylindrical coordinates with $\vec{\Omega}=\Omega \hat{z}$, we have $v_{\phi}=\Omega r$ and $v_{r}=v_{z}=0$.
$\vec{\omega}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\phi}\right) \hat{z}=2 \Omega \hat{z}$
The fluid is irrotational if $\vec{\omega}=0$.

Vector Derivatives in Cylindrical Coordinates

CYLINDRICAL $\quad d \boldsymbol{l}=d r \hat{r}+r d \phi \hat{\phi}+d z \hat{z} ; d \tau=r d r d \phi d z$
Gradient. $\quad \nabla t=\frac{\partial t}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial t}{\partial \phi} \hat{\phi}+\frac{\partial t}{\partial z} \hat{z}$
Divergence. $\quad \nabla \cdot \mathbf{v}=\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z}$
Curl.

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{v}= & {\left[\frac{1}{r} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{r}+\left[\frac{\partial v_{r}}{\partial z}-\frac{\partial v_{z}}{\partial r}\right] \hat{\phi} } \\
& +\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\phi}\right)-\frac{\partial v_{r}}{\partial \phi}\right] \hat{z}
\end{aligned}
$$

Laplacian. $\quad \nabla^{2} t=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Circulation

- Circulation is closely related to vorticity
- Circulation of a fluid around a closed loop is defined as

$$
C=\oint \vec{v} \cdot d \vec{l}
$$

- Stoke's theorem:

$$
C=\int_{S}(\vec{\nabla} \times \vec{v}) \cdot d \vec{S}=\int_{S} \vec{\omega} \cdot d \vec{S}
$$

- If the flow is irrotational, $\vec{\omega}=0 \Rightarrow C=0$.

Credit: Wikipedia

Shearing

Shearing can occur when neighboring fluid moves with different velocities.
In the presence of viscosity, the shear motion develops a viscous stress that opposes the motion.

The stress acting on a fluid element can be characterized by a stress tensor \overleftrightarrow{T}.

Simple Model of Viscosity

$f_{1}^{\mathrm{vis}}=\mu \frac{\partial v_{x}(x, y+d y / 2, z)}{\partial y} d x d z$
$f_{2}^{\mathrm{vis}}=-\mu \frac{\partial v_{x}(x, y-d y / 2, z)}{\partial y} d x d z$

μ : coefficient of shear viscosity
Net force $f_{x}^{\mathrm{vis}}=f_{1}^{\mathrm{vis}}+f_{2}^{\mathrm{vis}}=\mu \frac{\partial^{2} v_{x}}{\partial y^{2}} d x d y d z=\mu \frac{\partial^{2} v_{x}}{\partial y^{2}} d V$
Adding the contributions from the other two directions:

$f_{x}^{\mathrm{vis}}=\mu\left(\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial z^{2}}\right) d V=\mu \nabla^{2} v_{x} d V$
The y and z -components of the viscous force are obtained by changing v_{x} to v_{y} and v_{z}.
Viscous force: $\vec{f}^{\mathrm{vis}}=\mu \nabla^{2} \vec{v} d V$

Stress Tensor

- Stress tensor can be represented by a 3×3 matrix. In Cartesian coordinates,

$$
\overleftrightarrow{T}=\left(\begin{array}{lll}
T_{x x} & T_{x y} & T_{x z} \\
T_{y x} & T_{y y} & T_{y z} \\
T_{z x} & T_{z y} & T_{z z}
\end{array}\right)
$$

- Force acting on a small surface $d \vec{A}=\hat{n} d A$ is given by

$$
d \vec{F}=\overleftrightarrow{T} \cdot d \vec{A}=d A\left(T_{x x} n_{x}+T_{x y} n_{y}+T_{x z} n_{z}\right) \hat{x}+d A\left(T_{y x} n_{x}+T_{y y} n_{y}+T_{y z} n_{z}\right) \hat{y}+d A\left(T_{z x} n_{x}+T_{z y} n_{y}+T_{z z} n_{z}\right) \hat{z}
$$

$$
=d A\left(\begin{array}{ccc}
T_{x x} & T_{x y} & T_{x z} \\
T_{y x} & T_{y y} & T_{y z} \\
T_{z x} & T_{z y} & T_{z z}
\end{array}\right)\left(\begin{array}{c}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right)
$$

- It can be shown that \overleftrightarrow{T} must be symmetry: $T_{i j}=T_{j i}$

Force on Fluid

$$
\vec{F}=-\int_{S} \overleftrightarrow{T} \cdot d \vec{A}
$$

Note that negative sign since $d \vec{A}$ points outward.
Divergence theorem:

$\vec{F}=-\int_{V} \vec{\nabla} \cdot \overleftrightarrow{T} d V$
$\vec{\nabla} \cdot \overleftrightarrow{T}=\left(\frac{\partial T_{x x}}{\partial x}+\frac{\partial T_{y x}}{\partial y}+\frac{\partial T_{z x}}{\partial z}\right) \hat{x}+\left(\frac{\partial T_{x y}}{\partial x}+\frac{\partial T_{y y}}{\partial y}+\frac{\partial T_{z y}}{\partial z}\right) \hat{y}+\left(\frac{\partial T_{x z}}{\partial x}+\frac{\partial T_{y z}}{\partial y}+\frac{\partial T_{z z}}{\partial z}\right) \hat{z}$
Force per unit volume: $\vec{f}=-\vec{\nabla} \cdot \overleftrightarrow{T}$

Viscous Stress Tensor

The stress tensor of an ideal fluid is $\overleftrightarrow{T}=P \overleftrightarrow{G}$, where \overleftrightarrow{G} is called the metric tensor and is represented by an identity matrix in Cartesian coordinates. In Cartesian coordinates, \overleftrightarrow{T} is represented by a diagonal matrix

$$
\overleftrightarrow{T}=\left(\begin{array}{lll}
P & 0 & 0 \\
0 & P & 0 \\
0 & 0 & P
\end{array}\right)
$$

Force acting on a small area is $d \vec{F}=\overleftrightarrow{T} \cdot d \vec{A}=P d \vec{A}$. Force is isotropic (same magnitude in every direction). Force per unit volume is
$\vec{f}=-\vec{\nabla} \cdot \overleftrightarrow{T}=-\frac{\partial P}{\partial x} \hat{x}-\frac{\partial P}{\partial y} \hat{y}-\frac{\partial P}{\partial z} \hat{z}=-\vec{\nabla} P$
In the presence of viscosity, $\overleftrightarrow{T}=P \overleftrightarrow{G}+\overleftrightarrow{\tau}, \overleftrightarrow{\tau}$ is called the viscous stress tensor.
Viscous force acting on a small ares is $d \vec{F}_{\text {vis }}=\overleftrightarrow{\tau} \cdot d \vec{A}$
Viscous force per unit volume is $\vec{f}_{\text {vis }}=-\vec{\nabla} \cdot \overleftrightarrow{\tau}$

Momentum Equation with Viscosity

Momentum equation: $\quad(\rho d V) \frac{d \vec{v}}{d t}=-d V \vec{\nabla} \cdot \overleftrightarrow{T}+(\rho d V) \vec{g}$

$$
\begin{aligned}
& \rho \frac{d \vec{v}}{d t}=-\vec{\nabla} \cdot \overleftrightarrow{T}+\rho \vec{g} \\
& \overleftrightarrow{T}=P \overleftrightarrow{G}+\overleftrightarrow{\tau} \quad \Rightarrow \quad \vec{\nabla} \cdot \overleftrightarrow{T}=\vec{\nabla} P+\vec{\nabla} \cdot \overleftrightarrow{\tau} \\
& \frac{d \vec{v}}{d t}=\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}+\frac{1}{\rho} \vec{\nabla} \cdot \overleftrightarrow{\tau}
\end{aligned}
$$

Need an expression for $\overleftrightarrow{\tau}$ that depends on the velocity field \vec{v}.
$\overleftrightarrow{\tau} \neq 0$ only for non-uniform \vec{v}, but $\overleftrightarrow{\tau}=0$ if the fluid is rigidly rotating.

Velocity Gradient Tensor

$$
\left(\begin{array}{ccc}
\frac{\partial v_{x}}{\partial x} & \frac{\partial v_{y}}{\partial x} & \frac{\partial v_{z}}{\partial x} \\
\frac{\partial v_{x}}{\partial y} & \frac{\partial v_{y}}{\partial y} & \frac{\partial v_{z}}{\partial y} \\
\frac{\partial v_{x}}{\partial z} & \frac{\partial v_{y}}{\partial z} & \frac{\partial v_{z}}{\partial z}
\end{array}\right)
$$

$\overleftrightarrow{\tau}$ is symmetric, but $\vec{\nabla} \vec{v}$ is not. Cannot express $\overleftrightarrow{\tau}$ in terms of $\vec{\nabla} \vec{v}$ directly.
Decompose $\vec{\nabla} \vec{v}$ into 3 components: $(\vec{\nabla} \vec{v})_{i j}=\frac{\partial v_{j}}{\partial x_{i}}=\frac{1}{3} \theta \delta_{i j}+r_{i j}+\sigma_{i j}$
Expansion: $\theta=\operatorname{Tr}(\vec{\nabla} \vec{v})=\vec{\nabla} \cdot \vec{v}$
Anti-symmetric part of $\vec{\nabla} \vec{v}: r_{i j}=\frac{1}{2}\left(\frac{\partial v_{j}}{\partial x_{i}}-\frac{\partial v_{i}}{\partial x_{j}}\right)$
Symmetric trace-free part of $\vec{\nabla} \vec{v}: \sigma_{i j}=\frac{1}{2}\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial x_{j}}\right)-\frac{1}{3} \theta \delta_{i j}$

Physical Meaning of θ

Consider a small fluid element occupying a small volume ΔV and mass $\Delta m=\rho \Delta V$.
Moving with the mass, we have
$0=\frac{d}{d t}(\rho \Delta V)=\Delta V \frac{d \rho}{d t}+\rho \frac{d \Delta V}{d t}$
Continuity equation: $\frac{d \rho}{d t}=-\rho \vec{\nabla} \cdot \vec{v}=-\rho \theta$
$-\rho \theta \Delta V+\rho \frac{d \Delta V}{d t}=0$
$\theta=\frac{1}{\Delta V} \frac{d \Delta V}{d t}$
θ is the fractional rate of increase of fluid element's volume.

\overleftrightarrow{r} and $\overleftrightarrow{\sigma}$

$r_{x x}=r_{y y}=r_{z z}=0, r_{x y}=-r_{y x}=\frac{1}{2}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)=\frac{1}{2}(\vec{\nabla} \times \vec{v})_{z}=\frac{1}{2} \omega_{z}$
Similarly, $r_{y z}=-r_{z y}=\frac{1}{2} \omega_{x}, r_{z x}=-r_{x z}=\frac{1}{2} \omega_{y}$
$\overleftrightarrow{r}=\frac{1}{2}\left(\begin{array}{ccc}0 & \omega_{z} & -\omega_{y} \\ -\omega_{z} & 0 & \omega_{x} \\ \omega_{y} & -\omega_{x} & 0\end{array}\right)$

\overleftrightarrow{r} describes the local rotation of fluid.
$\overleftrightarrow{\tau}$ is symmetry but \overleftrightarrow{r} is anti-symmetric. $\overleftrightarrow{\tau}$ cannot depend on \overleftrightarrow{r}.
$\overleftrightarrow{\sigma}$ is symmetric and trace-free. It describes the shear motion of fluid.

Bulk and Shear Viscosity

Simple model of viscosity: $\overleftrightarrow{\tau}=-\zeta \theta \overleftrightarrow{G}-2 \mu \overleftrightarrow{\sigma}$ or in component form:

$$
\tau_{i j}=-\zeta \theta \delta_{i j}-2 \mu \sigma_{i j}
$$

$\zeta:$ coefficient of bulk viscosity, μ : coefficient of shear viscosity.
Bulk viscosity resists the fluid's expansion and contraction.
Shear viscosity resists the fluid's shear motion.
In general, bulk viscosity << shear viscosity.
Another quantity is kinematic viscosity $\nu=\mu / \rho$

Navier-Strokes Equation

$$
\begin{aligned}
& \left.\rho \frac{d \vec{v}}{d t}=\rho\left(\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}\right)=-\vec{\nabla} P+\rho \vec{g}-\vec{\nabla} \cdot \overleftrightarrow{\tau} \right\rvert\,, \quad \overleftrightarrow{\tau}=-2 \mu \overleftrightarrow{\sigma} \\
& \tau_{i j}=-\mu\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial x_{j}}\right)-\frac{2}{3} \mu \theta \delta_{i j}=-\mu\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial x_{j}}\right) \text { for incompressible fluid }(\theta=0) . \\
& \vec{\nabla} \cdot \overleftrightarrow{\tau}=\sum_{i=1}^{3} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{3} \tau_{i j} \hat{x}_{j}\right)=-\mu \sum_{i=1}^{3} \sum_{j=1}^{3}\left(\frac{\partial^{2} v_{i}}{\partial x_{i} \partial x_{j}}+\frac{\partial^{2} v_{j}}{\partial x_{i}^{2}}\right) \hat{x}_{j} \\
& \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial^{2} v_{i}}{\partial x_{i} \partial x_{j}} \hat{x}_{j}=\sum_{j=1}^{3} \hat{x}_{j} \frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{3} \frac{\partial v_{i}}{\partial x_{i}}\right)=\vec{\nabla}(\vec{\nabla} \cdot \vec{v})=0 \text { for incompressible fluid. } \\
& \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{\partial^{2} v_{j}}{\partial x_{i}^{2}} \hat{x}_{j}=\sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(\sum_{j=1}^{3} v_{j} \hat{x}_{j}\right)=\sum_{i=1}^{3} \frac{\partial^{2} \vec{v}}{\partial x_{i}^{2}}=\nabla^{2} \vec{v}
\end{aligned}
$$

Navier-Strokes Equation for Incompressible Fluid

For incompressible fluid, $\vec{\nabla} \cdot \overleftrightarrow{\tau}=-\mu \nabla^{2} \vec{v}$.

$$
\rho \frac{d \vec{v}}{d t}=\rho\left(\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}\right)=-\vec{\nabla} P+\rho \vec{g}+\mu \nabla^{2} \vec{v}
$$

Or

$$
\frac{d \vec{v}}{d t}=\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}+\nu \nabla^{2} \vec{v}
$$

$$
\nu=\mu / \rho: \text { kinematic viscosity }
$$

Evolution of Circulation

Circulation: $\Gamma(t)=\oint_{C(t)} \vec{v} \cdot d \vec{x}=\int_{S(t)} \vec{\omega} \cdot d \vec{S}$
Suppose the loop $C(t)$ follows the motion's motion. Then

$$
\begin{aligned}
& \frac{d \Gamma}{d t}=\oint_{C(t)} \frac{d}{d t}(\vec{v} \cdot d \vec{x})=\oint_{C(t)} \frac{d \vec{v}}{d t} \cdot d \vec{x}+\oint_{C(t)} \vec{v} \cdot d\left(\frac{d \vec{x}}{d t}\right) \\
& \oint_{C(t)} \vec{v} \cdot d\left(\frac{d \vec{x}}{d t}\right)=\oint_{C(t)} \vec{v} \cdot d \vec{v}=\frac{1}{2} \oint_{C(t)} d v^{2}=0
\end{aligned}
$$

Navier-Stokes equation: $\frac{d \vec{v}}{d t}=-\frac{\vec{\nabla} P}{\rho}+\vec{g}-\frac{1}{\rho} \vec{\nabla} \cdot \overleftrightarrow{\tau}$

$$
\frac{d \Gamma}{d t}=-\oint_{C(t)} \frac{\vec{\nabla} P}{\rho} \cdot d \vec{x}+\oint_{C(t)} \vec{g} \cdot d \vec{x}-\oint_{C(t)} \frac{1}{\rho}(\vec{\nabla} \cdot \overleftrightarrow{\tau}) \cdot d \vec{x}
$$

Kelvin's Circulation Theorem

$$
\begin{aligned}
& \oint_{C(t)} \vec{g} \cdot d \vec{x}=\int_{S(t)}(\vec{\nabla} \times \vec{g}) \cdot d \vec{S}=-\int_{S(t)}(\vec{\nabla} \times \vec{\nabla} U) \cdot d \vec{S}=0 \\
& -\oint_{C(t)} \frac{\vec{\nabla} P}{\rho} \cdot d \vec{x}=-\int_{S(t)}\left(\vec{\nabla} \times \frac{\vec{\nabla} P}{\rho}\right) \cdot d \vec{S}=\int_{S(t)} \frac{\vec{\nabla} \rho \times \vec{\nabla} P}{\rho^{2}} \cdot d \vec{S} \\
& \frac{d \Gamma}{d t}=\int_{S(t)} \frac{\vec{\nabla} \rho \times \vec{\nabla} P}{\rho^{2}} \cdot d \vec{S}-\oint_{C(t)} \frac{1}{\rho}(\vec{\nabla} \cdot \overleftrightarrow{\tau}) \cdot d \vec{x}
\end{aligned}
$$

If the fluid is barotropic: $P=P(\rho), \vec{\nabla} P=\frac{d P}{d \rho} \vec{\nabla} \rho$ and so $\vec{\nabla} \rho \times \vec{\nabla} P=0$.

$$
\frac{d \Gamma}{d t}=0 \text { for barotropic, inviscid flow. }
$$

Water flowing through Cylindrical Pipe I

Continuity equation: $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot(\rho \vec{v})=0$
In cylindrical coordinates,

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial\left(\rho v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial\left(\rho v_{\theta}\right)}{\partial \theta}+\frac{\partial\left(\rho v_{z}\right)}{\partial z}=0
$$

Looking for a steady solution $(\partial \rho / \partial t=0)$, axisymmetric and $v_{r}=v_{\theta}=0$
$\Rightarrow \frac{\partial v_{z}}{\partial z}=0, \Rightarrow v_{z}=v_{z}(r)$
Navier-Stokes equation:
$\rho\left(\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}\right)=-\vec{\nabla} P+\rho \vec{g}+\mu \nabla^{2} \vec{v}$
Set $\partial \vec{v} / \partial t=0$ and write $P=\rho g H+P_{1}$, where H is height from a reference point.

Water flowing through Cylindrical Pipe II

$P=\rho g H+P_{1} \quad \Rightarrow \quad \vec{\nabla} P=\rho g \hat{H}+\vec{\nabla} P_{1}=-\rho \vec{g}+\vec{\nabla} P_{1}$
Navier-Stokes equation becomes $\quad \rho \vec{v} \cdot \vec{\nabla} \vec{v}=-\vec{\nabla} P_{1}+\mu \nabla^{2} \vec{v}$
Gravity is eliminated by the $\rho g H$ term. In the following, I will drop the subscript 1. So P means P_{1} (pressure - $\rho g H$).
r-component:
$\rho\left(v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{v_{\theta}^{2}}{r}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial P}{\partial r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial^{2} v_{r}}{\partial z^{2}}\right]$
$\Rightarrow \quad \frac{\partial P}{\partial r}=0, P=P(z)$
z-component: $\rho\left(v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial P}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]$

Water flowing through Cylindrical Pipe III

$\frac{d P}{d z}=\frac{\mu}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)$

$\Rightarrow \quad \frac{d P}{d z}=\frac{\mu}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=k=\mathrm{constant}$
Let L be the length of the pipe. Integrating $d P / d z=k$ from $z=0$ to $z=L$ gives
$\Delta P=k L$ or $k=-\Delta P / L$, where $\Delta P=P(0)-P(L)$ is the pressure difference between the two ends of the pipe.

$$
\begin{aligned}
& \frac{\mu}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=-\frac{\Delta P}{L} \Rightarrow r \frac{d v_{z}}{d r}=-\frac{\Delta P}{\mu L} \int r d r=-\frac{\Delta P}{2 \mu L} r^{2}+C_{1} \\
& v_{z}=\int\left(-\frac{\Delta P}{2 \mu L} r+\frac{C_{1}}{r}\right) d r=-\frac{\Delta P}{4 \mu L} r^{2}+C_{1} \ln r+C_{2}
\end{aligned}
$$

Water flowing through Cylindrical Pipe IV

$v_{z}(r)=-\frac{\Delta P}{4 \mu L} r^{2}+C_{1} \ln r+C_{2}$
Boundary conditions of v_{z} :
(1) finite at $r=0 \quad \Rightarrow \quad C_{1}=0$,
(2) $v_{z}=0$ at the wall at $r=R \quad \Rightarrow \quad C_{2}=\frac{\Delta P}{4 \mu L} R^{2}$
$v_{z}(r)=\frac{\Delta P}{4 \mu L} R^{2}\left(1-\frac{r^{2}}{R^{2}}\right) \quad, \quad v_{z}(0)=\frac{\Delta P}{4 \mu L} R^{2}$
Average flow velocity is
$\left\langle v_{z}\right\rangle=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} \frac{\Delta P}{4 \mu L} R^{2}\left(1-\frac{r^{2}}{R^{2}}\right) r d r d \theta=\frac{\Delta P}{2 \mu L} \int_{0}^{R}\left(r-\frac{r^{3}}{R^{2}}\right) d r$
$\left\langle v_{z}\right\rangle=\frac{\Delta P R^{2}}{8 \mu L}=\frac{1}{2} v_{z}(0)$

Water flowing through Cylindrical Pipe V

$$
\begin{aligned}
& v_{z}(r)=\frac{\Delta P}{4 \mu L} R^{2}\left(1-\frac{r^{2}}{R^{2}}\right) \\
& \left\langle v_{z}\right\rangle=\frac{\Delta P}{8 \mu L} R^{2}
\end{aligned}
$$

Flow rate:
$Q=\pi R^{2}\left\langle v_{z}\right\rangle=\frac{\pi \Delta P R^{4}}{8 \mu L}$
This is called the Hagen-Poiseuille equation.

Reynolds Number and Turbulence

Navier-Stokes equation: $\rho \frac{d \vec{v}}{d t}=\rho\left(\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \vec{\nabla} \vec{v}\right)=-\vec{\nabla} P+\rho \vec{g}+\mu \nabla^{2} \vec{v}$
$\frac{\text { inertia }}{\text { viscosity }}=\frac{\rho|d \vec{v} / d t|}{\mu\left|\nabla^{2} \vec{v}\right|} \sim \frac{\rho u / T}{\mu u / L^{2}} \sim \frac{\rho u /(L / u)}{\mu u / L^{2}}=\frac{\rho u L}{\mu}$
Reynolds number: $\operatorname{Re}=\frac{\rho u L}{\mu}$
L : characteristic length scale, u : characteristic speed. $T=L / u$: characteristic time.
Low Reynolds number \rightarrow flow dominated by viscosity \rightarrow laminar
High Reynolds number \rightarrow flow dominated by inertia \rightarrow turbulence
Experiments show that that pipe flow only remains laminar up to $\operatorname{Re} \sim 10^{3}-10^{5}$, depending on the smooth of pipe's entrance and roughness of its walls.

Flow around Sphere with Different Re's

- streamlines symmetrical fore and aft, qualitatively like inviscid flow
- creeping flow; Stokes' Law holds
- disturbance in velocity extends many sphere diameters away

- there's a ring or "doughnut" with closed circulation behind sphere. it's stable outside the ring, streamlines depart from sphere surface; precursor to fully separated flow
$\begin{array}{ll}\text { Re } & 10 \\ \text { D } & 0.27 \mathrm{~mm}\end{array}$

D $\quad 0.27 \mathrm{~mm}$
w

100
0.81 0.81 mm
$12.4 \mathrm{~cm} / \mathrm{s}$

(B)

- streamlines converge more slowly than diverge
- still creeping flow, Stokes' Law holds ato creept this point
to disturbance in velo disturbance in velocity still extend far away
(D)
- the ring vortex osciliates back and forth in position with time

$$
\begin{array}{lll}
\text { Re } & 100 \\
\text { D } & 0.81 \mathrm{~mm}
\end{array}
$$

$$
\begin{aligned}
& 150 \\
& 0.99 \mathrm{~m}
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{D} & 0.81 \mathrm{~mm} & 0.99 \mathrm{~mm} \\
\mathrm{~W} & 12.4 \mathrm{~cm} / \mathrm{s} & 15.3 \mathrm{~cm} / \mathrm{s}
\end{array}
$$

$\mathrm{Re}=150-$ thousands

(E)

- cyclic shedding of ring vortices: ring breaks away, drifts downstream in wake flow, degenerates; a new ring forms behind sphere

$\begin{array}{ll}\text { D } & 2.8 \mathrm{~mm} \\ \mathrm{~W} & 3.5 \mathrm{~cm} / \mathrm{s}\end{array}$
- gradual decrease in regularity of vortex structure in wake of sphere
- boundary layer is progressively
thinner on front surface

10

Figure by MIT OpenCourseWare

10,000
5.5 mm (a marble)
$80 \mathrm{~cm} / \mathrm{s}$

- gradual develop separated flow until fully turbulent

(G)
- boundary layer is turbulent
separation point is farther back
along sphere surface from lam. to Turb. BL ("drag crisis")

Credit: MIT OpenCourseWare

Darcy's Friction Factor and Head Loss

Hagen-Poiseuille equation: $\Delta P=\frac{8 \mu L U_{a v g}}{R^{2}}=\frac{32 \mu L U_{a v g}}{D^{2}}$
Here $D=2 R$ is the pipe diameter, $U_{\text {avg }}=\left\langle v_{z}\right\rangle$ is the average flow velocity in the pipe.
In the absence of viscosity, Bernoulli's equation:
$\frac{1}{2} \rho v_{1}^{2}+P_{1}+\rho g h_{1}=\frac{1}{2} \rho v_{2}^{2}+P_{2}+\rho g h_{2}$
For a horizontal and steady flow, $\Delta P=P_{1}-P_{2}=0$.

In the presence of viscosity, $\Delta P \propto L$. Define a dimensionless parameter called Darcy's friction factor:

$$
\frac{\Delta P}{L}=f \frac{\frac{1}{2} \rho U_{a v g}^{2}}{D} \quad \text { or } \quad f=\frac{\Delta P}{\frac{1}{2} \rho U_{a v g}^{2}}\left(\frac{D}{L}\right)
$$

Head loss is defined as $h_{f} \equiv \frac{\Delta P}{\rho g} \Rightarrow h_{f}=f \frac{L U_{a v g}^{2}}{2 D g} \quad$ (Darcy-Weisbach equation)

Darcy's Friction Factor and Head Loss (cont)

For pipes with non-circular cross section, f and h_{f} are defined by replacing the pipe diameter D by the hydraulic diameter $D_{h} \equiv \frac{4 A}{P}$.
A : cross-sectional area of the pipe, $P:$ perimeter of the pipe.
For a duct with rectangular cross section with height h and width $w, D_{h}=\frac{4 w h}{2(w+h)}$.
For laminar flow in a cylindrical pipe, Hagen-Poiseuille equation gives
$f=\frac{64 \mu}{\rho U_{\text {avg }} D}=\frac{64}{\operatorname{Re}}$
where the Reynolds number is calculated by $\operatorname{Re}=\frac{\rho U_{\text {avg }} D}{\mu}$.
In the presence of turbulence, f also depends on the surface roughness of the pipe ϵ.

Moody Diagram

Credit: J.M. McDonough, Lectures In Elementary Fluid Dynamics: Physics, Mathematics and Applications

Colebrook Formula

For $4 \times 10^{3}<\operatorname{Re}<10^{8}$, Darcy's friction factor may be computed by the Colebrook formula

$$
\frac{1}{\sqrt{f}}=-2 \log _{10}\left(\frac{\epsilon / D}{3.7}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right)
$$

f needs to be solved iteratively.
The calculated values of f differ from experimental results $<15 \%$.

Moody diagram calculated by the Colebrook formula

Velocity Profile

Laminar flow: $u=U_{c}\left(1-\frac{r^{2}}{R^{2}}\right)$
Turbulent flow: $u=U_{c}\left(1-\frac{r}{R}\right)^{1 / n}$
$n=6$ when $\operatorname{Re} \approx 2 \times 10^{4}$
$n=10$ when $\operatorname{Re} \approx 3 \times 10^{6}$
At high $R e$, velocity profile is relatively flat, but decreases rapidly to 0 near the wall.

Practical Head Loss Equation

Bernoulli's equation $\frac{P_{1}}{\rho}+\frac{1}{2} v_{1}^{2}+g z_{1}=\frac{P_{2}}{\rho}+\frac{1}{2} v_{2}^{2}+g z_{2}$ is replaced by:

$$
\frac{P_{1}}{\rho g}+\alpha_{1} \frac{U_{1}^{2}}{2 g}+z_{1}+h_{p u m p}=\frac{P_{2}}{\rho g}+\alpha_{2} \frac{U_{2}^{2}}{2 g}+z_{2}+h_{f}+h_{\text {turbine }}
$$

U_{1}, U_{2} : average flow speeds, α_{1}, α_{2} : correction factor for KE.
$\alpha=2$ for laminar flows, $\alpha \approx 1$ for turbulent flows.
h_{f} : head loss caused by viscosity,
$h_{\text {pump }}$: head gain by a pump (if present),
$h_{\text {turbine }}$: head loss by driving a turbine (if present).

Example 1

Oil, with $\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$, and $\nu=10^{-5} \mathrm{~m}^{2} / \mathrm{s}$, flows at $Q=0.2 \mathrm{~m}^{3} / \mathrm{s}$ through 500 m of 0.2 m -diameter cast iron pipe (roughness $\epsilon=0.26 \mathrm{~mm}$). Determine the head loss and pressure drop if the pipe slopes down at 10°.

Flow speeds $U_{1}=U_{2}=\frac{Q}{\pi D^{2} / 4}=6.37 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\frac{\rho U D}{\mu}=\frac{U D}{\nu}=1.27 \times 10^{5}$

The flow is turbulent. Using Colebrook formula with $\epsilon / D=0.26 / 200$ and the above Re, I get $f=0.0227$. The head loss is given by the Darcy-Weisback equation:
$h_{f}=f \frac{L U^{2}}{2 D g}=117 \mathrm{~m} . \alpha \approx 1$ for turbulent flows. $\frac{P_{1}}{\rho g}+\frac{U_{1}^{2}}{2 g}+z_{1}=\frac{P_{2}}{\rho g}+\frac{U_{2}^{2}}{2 g}+z_{2}+h_{f}$
$\frac{P_{1}-P_{2}}{\rho g}=h_{f}-\left(z_{1}-z_{2}\right)=117 \mathrm{~m}-(500 \mathrm{~m}) \sin 10^{\circ}=30 \mathrm{~m}$.
Pressure drop $\Delta P=\rho g(30 \mathrm{~m})=2.65 \times 10^{5} \mathrm{~Pa}$.

Example 2

The pipe in the previous example is connected to a horizontal pipe of length 100 m . The pipe is also made of cast iron but with diameter $D=0.25 \mathrm{~m}$. Suppose the flow rate remains the same ($Q=0.2 \mathrm{~m}^{3} / \mathrm{s}$). Calculate the head loss and pressure difference in the second pipe.

$$
\begin{aligned}
& U_{3}=\frac{Q}{\pi D^{2} / 4}=4.07 \mathrm{~m} / \mathrm{s} \\
& \operatorname{Re}=\frac{U_{3} D}{\nu}=1.02 \times 10^{5}, \epsilon / D=0.26 / 250
\end{aligned}
$$

The Colebrook formula gives $f=0.0223$.
100 m
Head loss: $h_{f}=f \frac{L U_{3}^{2}}{2 D g}=7.54 \mathrm{~m}$.
Horizontal pipe $\Rightarrow z_{2}=z_{3}, \quad \frac{P_{2}}{\rho g}+\frac{U_{2}^{2}}{2 g}=\frac{P_{3}}{\rho g}+\frac{U_{3}^{2}}{2 g}+h_{f}, \quad U_{2}=6.37 \mathrm{~m} / \mathrm{s}$ from previous calculation.
$\Rightarrow P_{2}-P_{3}=\rho g h_{f}+\rho\left(U_{3}^{2}-U_{2}^{2}\right) / 2=5.6 \times 10^{4} \mathrm{~Pa}$

