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Overview of Course

• Introduction
• Monte Carlo Integration

• Monte Carlo Simulation of Distributions (aka MC Random Number Generation)
   

• Vegas Monte Carlo Integration and Random Number Generation
  

• Using these techniques in the CAIN Beam-Beam MC

 Brute Force Rejection Method
 Cumulative Distribution Function (CDF) Inversion Method
 Combining Rejection Method  with CDF inversion for improved efficiency
 Example of energy distribution of Compton scattered photons in γγ Higgs factory 

 General formulae for integration and error
 Rejection Method
 Example: calculation of π with rejection method
 Error analysis of π calculation 

 Importance sampling as the solution to integration in many dimensions
 The Vegas algorithm for both integration and random number generation
 Example of 2-d differential γγ luminosity distribution – brute force rejection vs. Vegas+rej
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What is Monte Carlo Simulation?

A numerical simulation 
method which uses 
sequences of  random 
numbers  to solve 
complex problems.  
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Why use the Monte Carlo Method?

• Other numerical methods typically need a mathematical 
description of the system (ordinary or partial differential 
equations)

• More and more difficult to solve as complexity increases
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Monte Carlo Simulation Overview

MC assumes that many system components are described by  probability 
density functions which can be modeled with no need to write down equations. 

These PDF are sampled randomly, many simulations are performed, particles 
are propagated through time using the laws of physics, and the result is the 
average  over a number of observations
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A Brief History - I

• Fermi used it to simulate neutron diffusion in the 1930s. 
He knew the behavior of one neutron, but he did not have 
a formula for how a system of neutrons would behave. 

• Method formally developed by John Von Neumann during 
WWII, but already known before

Fermi used tables of numbers sorted on a roulette to obtain random 
numbers which he then used in his calculations of neutron absorption.

He also used it to demonstrate the 
stability of the first man-made 
nuclear reactor (Chicago Pile, 1942). 
His model had an analogy with heat 
diffusion models previously developed. 
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A Brief History - II

• Manhattan Project of WWII  (Von 
Neumann, Ulam, Metropolis)
– Scientists used it to construct dampers and 

shields for the nuclear bomb, experimentation 
was too time consuming and dangerous. 

• Extensively used in many disciplines especially after the advent of 
high-speed computing:
– Cancer therapy, traffic flow, Dow-Jones forecasting, oil well exploration, 

stellar evolution, reactor design, particle physics, ancient languages 
deciphering,…



8

Monte Carlo Integration
• Monte Carlo integration and the Monte Carlo simulation of probability density functions (PDF’s) are 

intimately connected --  they are really one and the same activity.

• General Monte Carlo integration formulae:
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Exercise 1:  Determination of π using MC integration [piCalculation.py]
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From the distributions produced by piCalculation.py check that you get this error.  Also, the pulls = deviation/error are plotted.
These should give a normal distribution with σ=1 if errors are properly calculated.
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Exercise 1:  Determination of π using MC integration [piCalculation.py]
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Monte Carlo Probability Density Function (PDF) simulation
• General PDF simulation formulae.   Start with the Monte Carlo integration expression:
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Method of Inverting the Cumulative Density Function (CDF)
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XCC s-channel   @  125 GeVH sγγ → =

XCC: XFEL Compton γγ Collider Higgs Factory 

− −

− −→

60 m before the  collision point the 62.5 GeV electon beam is hit with a1 keV X-ray beam
from an X-ray free electron laser (XFEL).  In the Compton scattering process  the
electrons and photo

e e
e e

µ

γ γ
ns basically exchange momenta, so that after the Compton process the photons

have 62.5 GeV energy and the electron energy is considerably degraded.  The 62.5 GeV photons 
on each side of the primary collison point annihilate to form a 125 GeV Higgs boson. 



One of the issues for γγ colliders is the dependence of the 
photon energy spectra on the laser energy

33
2

1
dL

/d
E

 (1
0

 cm
 s

/0
.1 

G
eV

)
γγ

−
−

E (GeV)γγ

m
33 2 1

laser 
2

bea

4E E
3.1

m

E 86.5 Ge

Lumi top 20% = 7.0 10  

V

cm  s

e

e

x γ −

− −×

= =

=

33
2

1
dL

/d
E

 (1
0

 cm
 s

/0
.1

 G
eV

)
γγ

−
−

E (GeV)γγ

m
33 2 1

laser 
2

bea

4E E
1000

m

E 62.6 Ge

Lumi top 20% = 3.0 10  

V

cm  s

e

e

x γ −

− −×

= =

=

.
Low integrated lumi concentrated in one spike.
Produce Higgs bosons and not much else
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14XCC 1 keV X-ray laser 2.4 eV optical laser
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Using a CDF to improve MC efficiency
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Using a CDF to improve MC efficiency 
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Exercise 2:  Using a CDF to improve MC efficiency    [comptonSpectrum.py]
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Exercise 2:  Using a CDF to improve MC efficiency    [comptonSpectrum.py]
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The Vegas Monte Carlo Integration Algorithm

(a) A reliable error estimate for the integral is readily computed.

(b) The integrand need not be continuous for the algorithm to function and,
      in particular, step functions pose no problem. Thus integration over hypervolumes
      of irregular shape is straightforward.

(c) The convergence rate is independent of the dimension of the integral.

(d) The algorithm is adaptive. It automatically concentrates evaluations of the
      integrand in those regions where the integrand is largest in magnitude.

The Vegas algorithm has the following properties:

G. Peter Lepage, 1977: “A New Algorithm for Adaptive Multidimensional Integration “

https://www.sciencedirect.com/science/article/pii/0021999178900049?via%3Dihub
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The Vegas Monte Carlo Integration Algorithm

Before the Vegas MC algorithm was introduced in 1977, all multi-dimensional MC integration programs, 
even those that were adaptive, required Nn integrand evaluations, where N represents the number of grid 
points along one axis and n is the dimension of the integral. 

The Vegas algorithm avoids the exponential growth in integrand evaluations by using  importance 
sampling.   
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Vegas algorithm 

Exploratory phase:
• subdivide integration space into rectangular grid
• perform integration in each subspace
• adjust grid according to dominant contributions
• integrate again, approximate optimal

Evaluation phase:
• integrate with high precision and optimized frozen grid
      or efficiently generate events using optimized frozen grid
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Vegas algorithm details in 1-d
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Implementation Details of Vegas algorithm 2-d
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Use of Vegas integration in MC event sample generation
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Exercise 3:  Vegas MC simulation of 2-d γγ lumi distribution [vegasCompton.py]
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In vegasCompton.py the 2-d differential luminosity distribution is created in two ways: 
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Exercise 3:  Vegas MC simulation of 2-d γγ lumi distribution [vegasCompton.py]
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Homework/Exam:  Modify vegasCompton.py to produce a double Gaussian distribution
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Homework/Exam:  Modify vegasCompton.py to produce a double Gaussian distribution

_ ( , )
_ 1 2( , 1, 2)

Notes to minimize the number of modifications:

Delete the method  and directly code the double Gaussian function in the method

The parameter  has no

dsig dy xnumber yy
dlum dy dy xnumber yy yy

xnumber

5 0 , 5= < <

 meaning in this exercise.  Instead of eliminating it as a function argument,
just leave it in the argument lists and loop over xnumber=3.13 only.

Set  so that you produce a distribution for my x y

, 2.5 ,= =The maximum values of the function are near    instead of  , so you will have to modify the 
calculation of the maximum weight.
        

mx y x y y
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The CAIN Beam-Beam Simulation Monte Carlo

• Stand-alone Monte Carlo program for simulations of beam–beam 
interactions involving high-energy electrons, positrons and photons

.
• Written by K. Yokoya et al., KEK, Japan, 1984–2011.

• Code is a mixture of FORTRAN 77 and FORTRAN 90/95,
     45 000 lines in  400 files

• Code not documented, comments in code scarce. But very good user 
manual

• Dedicated, elaborate meta-language for defining Input (65
     pages of description in User Manual).

• Output in form of text files with all particle information and TopDrower 
histograms 
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CAIN History
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CAIN Physical Processes
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CAIN Output

v3rey Very old graphics software, but still useable.
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Surprise in collision of unscattered 70 GeV electron beam with 70 GeV 
photon + electron  beam:    pinching instead of anti-pinching

1This pinching creates very high fields prob. to radiate  in time slice  and CAIN program terminatesγ⇒ >

No one predicted
this.   Would not
have been noticed
without the beam beam 
Monte Carlo program.
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