Tim Barklow |
Senior Staff Scientist
SLAC National Accelerator Laborat@ry
Menlo Park, CA

Overview of Course

Introduction
Monte Carlo Integration

U General formulae for integration and error

O Rejection Method

U Example: calculation of & with rejection method
Q Error analysis of n calculation

Monte Carlo Simulation of Distributions (aka MC Random Number Generation)

U Brute Force Rejection Method

O Cumulative Distribution Function (CDF) Inversion Method

0 Combining Rejection Method with CDF inversion for improved efficiency

O Example of energy distribution of Compton scattered photons in yy Higgs factory

Vegas Monte Carlo Integration and Random Number Generation

U Importance sampling as the solution to integration in many dimensions
U The Vegas algorithm for both integration and random number generation
QO Example of 2-d differential yy luminosity distribution — brute force rejection vs. Vegas+rej

Using these techniques in the CAIN Beam-Beam MC

What is Monte Carlo Simulation?

A numerical simulation
method which uses
sequences of random
numbers to solve
complex problems.

g
SAINTERAR

Ly ; % ITALIE

i 2 o

\% Arezzo KFahnaq
) = ‘V/

mmmmmm

Imperia
i L ibes
ille.
4
®
ulon
ia
MER:
MEDITERRANEE: La Corse
Nac:l{

Why use the Monte Carlo Method?

* Other numerical methods typically need a mathematical
description of the system (ordinary or partial differential
equations)

* More and more difficult to solve as complexity increases

Monte Carlo Simulation Overview

MC assumes that many system components are described by probability
density functions which can be modeled with no need to write down equations.

These PDF are sampled randomly, many simulations are performed, particles
are propagated through time using the laws of physics, and the result is the
average over a number of observations

randem numbers wn [0,1]

The Sun

probability
[(x) dcnoxity
> [unetivny (pdy)

resully of | A which deseribe

simulativn the sun

radisnec, sular wind [lucnee,
cvoluwticn of sun,

Physical System

Statistical Simulation

A Brief History - |

e Method formally developed by John Von Neumann during
WWII, but already known before

 Fermi used 1t to simulate neutron diffusion in the 1930s.
He knew the behavior of one neutron, but he did not have
a formula for how a system of neutrons would behave.

He also used it to demonstrate the
stability of the first man-made
nuclear reactor (Chicago Pile, 1942).
His model had an analogy with heat
diffusion models previously developed.

Fermi used tables of numbers sorted on a roulette to obtain random
numbers which he then used in his calculations of neutron absorption.

A Brief History - |l

* Manhattan Project of WWII (Von
Neumann, Ulam, Metropolis)

— Scientists used 1t to construct dampers and
shields for the nuclear bomb, experimentation
was too time consuming and dangerous.

« Extensively used in many disciplines especially after the advent of
high-speed computing:
— Cancer therapy, traffic flow, Dow-Jones forecasting, o1l well exploration,

stellar evolution, reactor design, particle physics, ancient languages
deciphering,...

Monte Carlo Integration

« Monte Carlo integration and the Monte Carlo simulation of probability density functions (PDF’s) are
intimately connected -- they are really one and the same activity.

« General Monte Carlo integration formulae:

Points x; in this sum are drawn at random from the distribution p(x) |
|

(= [d g8 =] dep(f ()~ 0 D 1E) =
Jaip()=1 . 5=} f(%)

For integration we accept all events pulled from the distribution p(x)

1 2
MC inteqgration statistical error: At)? E _
J () N —1 {N f }

Exercise 1: Determination of © using MC integration [piCalculation.py]

(= [t g =[dip f) = Y ET =I5)=
jdxp(x):l, S=Zf,.

1ifx*+y° <1
0 otherwise

1if0<x<1&0<y<l
0 otherwise

p(x,y)= { f(x,y)= {

t—iif(i:)az as N — w
N&G”™ 77 4

1|1 s’ 1 | s s 1 x|, =
At2: .2— - — = 1__
(30 N—{NZL Nz} N—{N Nz} N—14{ 4}

1

2
Ar—dnt—4| —Z| T |) _ 1642
N-14] 4 N-1

From the distributions produced by piCalculation.py check that you get this error. Also, the pulls = deviation/error are plotted.
These should give a normal distribution with =1 if errors are properly calculated.

9

Exercise 1: Determination of © using MC integration

[piCalculation.py]

17500 A

15000 A

12500 A

10000 -

7500 A

5000 A

2500 -

17500 A

15000 -

12500

10000 -

7500 A

5000 A

2500 -

error y= — 0.000, 0=0.052

N =1000

pull p=0.021, o=1.005

N =1000
pull distribution

1000

800 +

600

400

200 +

1000 4

800 A

600 -

400 A

200 A

error u= —0.000, 0=0.016

N =10,000

—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06

pull y= —0.007, o=0.990

N =10,000
pull distribution

10

Monte Carlo Probability Density Function (PDF) simulation

* General PDF simulation formulae. Start with the Monte Carlo integration expression:

{ = [d g(¥) =[dip(%) £ (%) ¥~ Zgix;]IVZf()= o Jwe=1 823,

If while performing an MC integration, we wanted in addition to produce an unweighted sample
of events reflecting the distribution g(x) we would only accept events x, pulled from p(x) for

hg()

&) >rR__ where r is a random number chosen after the event x, has been pulled
p(x;

whic

from p(x) and R, is the maximum weight for the MC simulation, chosen such that % <R__
PLX;

for all x, . This is called the MC rejection method of producing a unweighted sample. The case of
p(x)=1 will be referred to as the brute force rejection method.

The maximum weight R comes up all the time in the production of large MC data sets, since there
g(x,) <

is tension between low R__for good efficiency and high R__ to guarantee &)
PLX;

R_forallx, .

g(x,) S

In practice a small number of events with —
p(x;)

R__ is tolerated.

Method of Inverting the Cumulative Density Function (CDF)

The cumulative density function of the pdf f(x) is defined by

xXmax

r(x){ | dax fx >} j dx' f(x') = { | dx'f(x')} (F(x)-F(0)) ’fl—f=f<x>

O<r(x)<l Changlng variables from x to r gives

jdx f(x)= jdx = de ocjdr so that the distribution is flat in r. Thus one can

Immediately map a random number between 0 and 1 directly onto r without having
to spend time on a rejection algorithm. This can be extremely efficient. The
Issue is, given r(x), can we invert the function and solve for x?

12

XCC: XFEL Compton yy Collider Higgs Factory

XCC s-channel yy > H @ s =125 GeV

31GeVe 31GeVe

5 FF

626GeVe _awW ¥ Y4 626GeV o

70 MV/m 70 MV/m

cryo RF gun

\

cryo RF gun

‘ 4.2 km >

Compton scattering: 60 um before the e e collision point the 62.5 GeV electon beam is hit with a1 keV X-ray beam

© from an X-ray free electron laser (XFEL). In the Compton scattering process e y — e y the
VHT/ electrons and photons basically exchange momenta, so that after the Compton process the photons
have 62.5 GeV energy and the electron energy is considerably degraded. The 62.5 GeV photons
e'/_H—LL on each side of the primary collison point annihilate to form a 125 GeV Higgs boson.

13

33 -2 -1
dL/dE,, (10 ecm™ s™ /0.1 GeV)

One of the issues for yy colliders is the dependence of the
photon energy spectra on the laser energy

3 BWM) WN * Machine | E.- (GeV) Polarization Nu/yr Ngnd/Nu Npileup/BX
5 r NUM[] XCC ’ 62.8 90% e~ 80,000 170 9.5
£l] 24eViaser occ | 865 90% e~ 52,000 1310 50
-:3; s * ILC 125 —80% e~ +30% e* 98,000 130 1.3
lL \M 1 ILC 125 +80% e~ —=30% e* 65,000 50 1.3
y o 5.0 - ‘12‘5,2‘ - I12‘5 4‘ ' : lﬁvﬁ‘ ‘ L12-5 8
0.020 1 T T T T T T ,\\, 0.020 T T T T T T T T T T
M | | 1] | | |]
- Low integrated lumi concentrated in one spike. - i ‘ High integrated lumi .
Produce Higgs bosons and not much else. 7 i ‘ creates large background.)
0.015 — — = 0.015 [— ‘ | |
. i O - ‘ .
: s i :
| | T - ‘ \W .
4E E 7 0010 — -
0.010 — aser e] 9@ ’ 1
| x=—""=1000 | = i ‘ “ |
m S i \‘ |
- e h o |
B = 7 S B aser e I
I Ebeam_62'6 GeV] - . XII—;/Z?).I |
. o m
0.005 — Lumi top 20% = 3.0x10¥ cm ™ s~ — S 0005 — e]
- 1 = - E_ =86.5GeV |
i = - beam]
. - Lumi top 20% = 7.0x10” cm™ s~ i
OOOO 1 | 1 1 | 1 1 | | | | 1 1 | 1 | OOOO . I I . I | . . . | : . I | . . —

100 120 140 0 80 100 120 140

XCC 1 keV X-ray laser By (GeV) 2.4 eV optical laser E, (GeV) 14

Using a CDF to improve MC efficiency

For unpolarized electrons colliding with unpolarized photons through the Compton process e y > e ¥

E _—
the spectrum of photons with respect to y = E7 is given by Compton scattering: .
do I 4y 4y >_< V
el pt—— ;
@ Ty Xy £-p) . S o
4E]
where x = —=°7 "¢ s the center of mass energy squared of the e~ - laser ¥ system in units of the

m2

e

: L : 1
electron mass squared. This expression is dominated by the F—— term , so we can use
-y

‘jzo. ~ 1 1 as an first approximation to the distribution. It is simple enough that there is
y 1=y
a chance that the integral is invertible. Let's check.

15

Using a CDF to improve MC efficiency

Compton scattering:

deﬁz—ln(l—y). >—< 1

L n(1 = y) where the maximum y energyis y, .
-y In(I-y,) x+1

r(y){ [dy } [~In(1- y)] =

In(l-y)=rin(l-y,) or 1-y=(01-y,) or y=1-(I-p,)

r(y) is indeed invertible so we have a very efficient means to generate a IL distribution
—Yy

16

Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]

Fort = J'dy[‘ll—; =jdyp(y)f(y) we can try 2 different factorizations of ‘fi—; =p(») f(y):

1) p(y)=1 f(y):‘;—o- (i.e., brute force rejection method)
y
-1
(2) p(y) :% f(y) :‘Z—G{%} (more refined rejection method starting with an inverted CDF)
-y y [1=y

In comptonSpectrum.py compare the number of function evaluation using the brute force method vs. the

number of function evaluations using the hybrid CDF/rejection method. Also, note that as the center of mass
energy of the electon - laser photon system is increased from x=3.13 to 1000 to 100,000 the photon spectrum
becomes more sharply peaked aty =y, . What happens to the difference in function evalulations between brute
force rejection and hybrid as the spectrum becomes more sharply peaked?

17

Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]

comptonConversionRejMethod x = 3.130, ym=0.758 comptonConversionRejMethod x = 1000.000, ym = 0.999 comptonConversionRejMethod x = 100000.000, ym = 1.000
600
6000
3500
01 nEval=22,520 v NEval=1,339,568 w00 NEval=82,850,226
4007 2500 - 4000 4
| 2000
300 3000 A
1500
200 | 2000 -
1000
100 - 1000
500
0 - T T 0_ 0 T T T T
1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
500 comptonConversionHybridMethod x = 3.130, ym =0.758 comptonConversionHybridMethod x = 1000.000, ym = 0.999 comptonConversionHybridMethod x = 100000.000, ym = 1.000
3500 6000 1
500 nEval=19,315 nEval=18,696 nEval=19,148
3000 5000 4
4001 2500
4000
300 A 2000 -
3000
1500
200
2000
1000 -
100 + 1000 1
500 A
0- T T T 0- 0 f T T T T T
0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y E;//Eee y Ey/Eee y 4 ee

The Vegas Monte Carlo Integration Algorithm

The Vegas algorithm has the following properties:

(a) A reliable error estimate for the integral is readily computed.

(b) The integrand need not be continuous for the algorithm to function and,
in particular, step functions pose no problem. Thus integration over hypervolumes
of irregular shape is straightforward.

(c) The convergence rate is independent of the dimension of the integral.

(d) The algorithm is adaptive. It automatically concentrates evaluations of the
integrand in those regions where the integrand is largest in magnitude.

G. Peter Lepage, 1977: “A New Algorithm for Adaptive Multidimensional Integration *

19

https://www.sciencedirect.com/science/article/pii/0021999178900049?via%3Dihub

The Vegas Monte Carlo Integration Algorithm

Before the Vegas MC algorithm was introduced in 1977, all multi-dimensional MC integration programs,
even those that were adaptive, required N" integrand evaluations, where N represents the number of grid
points along one axis and n is the dimension of the integral.

The Vegas algorithm avoids the exponential growth in integrand evaluations by using importance
sampling.

is optimized when

In importance sampling, the density function p(x) in t—_[dx f(x) jdxp(x) fg *) |

p(x)= f(x)] Ud:ﬂ f(X) |} i.e. function evaluations are concentrated where the integrand is largest
in magnitude, regardless of whether or not the integrand is rapidly changing.

In practice p(x) = p,(x,))p,(x,)--- p,(x,) is a step-function with each axis divided up into its own set of NV intervals

20

Vegas algorithm

Exploratory phase:

» subdivide integration space into rectangular grid
« perform integration in each subspace

« adjust grid according to dominant contributions
* integrate again, approximate optimal

rectangular grid of hypercubes peak at the origin, adjusted grid
o g P

€—— HyPecuges Ir | i

" E !
- —>
&

- o
' - %

Evaluation phase:
* integrate with high precision and optimized frozen grid
or efficiently generate events using optimized frozen grid

21

Vegas algorithm details in 1-d

Consider the integral ¢ = jdx f(x)= _[dxp(x) fgx;

Divide the x —axis into /V equal segments 0=x, <x, <---<x, =1, Ax, =x, - X, ,

Define the step-function p(x) =

forx, —Ax, <x<x, i=1,2,....N

First perform Monte Carlo integration with with M integrand evalulation (typically M =~ 2000).

Next, define m, = K Z _Ax where typically K ~ 2000

f,= Z f(x) |ochL j dx| f(x)| and divide each increment Ax; into m, +1 subincrements.

x; —Ax<x<x; i x;—Ax
Since the total number of subincrements is now > N the subincrements are combined into N groups
which serves to define our new setof 0=x, <x, <---<xy, =1, Ax, =x,—x,

lterate in this manner until integral error is optimized.
To avoid rapid, destabilizing changes in the grid, it is better to damp the subdivisions using

Ax, L fAx,
{Ezf —1|log [fo,Ax]H , l<a<?2 29

Implementation Details of Vegas algorithm 2-d

f(x,y)
p.(x)p,(y)

Divide x —axis into N equal segments 0=x, <x, <---<x, =1 , Ax, =X, —Xx,

1 1 1 1
In 2-d we write ¢ = Idxj.dyf(x,y) = Idxpx(x)J.dypy(y)
0 0 0 0

Divide y —axis into N equal segments 0=y, <y, <--<yy =1, Ay, =y, -y,

|
X) = forx, - Ax. <x<x, i=1,2,... N
px() NAx l l l

p,(y)= fory,—Ay, <y<y,, iF1,2,..,N

NAy
1-d algorithm applied along x —axis with
— X, 1 1 2(x,
x;—Ax<x<x; O<y<l py(.V) Axi x;—Ax; 0 py(y)
1-d algorithm applied along y—axis with

i

] LA

(Z)z _ Z Z f (x y) f I (x y) : HyreRcuses

Vi —Ay<y<y O<x<l1 px (x) Ayl y; —Ay 0 x

\L‘T‘

Use of Vegas integration in MC event sample generation

Upon completion of the Vegas Monte Carlo integration, the step-function probability

density function p(x) = p,(x,)p,(x,)--- p,(x,) should be a good representation of the function
f(x), and can therefore be used to efficiently generate events according to the function f(x).
l.e, one pulls events according to p(x) = p,(x))p,(x,) - p,(x,) and then applies a rejection

algorithm using % , which shouldn't deviate too much from a constant value if
p(x

p(x) is a good representation of f(x). Most if not all particle physics event generators
utilize this technique.

p—

24

Exercise 3: Vegas MC simulation of 2-d yy lumi distribution [vegasCompton.py]

For unpolarized electrons colliding with unpolarized photons through the Compton process e y > ey

E E
the 2-d differential luminosity with respect to y, = Eﬂ and y, = Eﬂ is given by

e e

2 2 2
Ci 2 P S 2}{1_y2+ L4y, 4
dy,dy, I=y, x(l=y) x(1-») I=y, x(I-y,) x(1-y,)
4E .
where x =—=27"¢_ s the center of mass energy squared of the e” - laser y system in units of the

m

e

electron mass squared.

In vegasCompton.py the 2-d differential luminosity distribution is created in two ways:
2

O p(y,y,)=1 f(y,y,)= (i.e., brute force rejection method)

)V, 4y,
d’L
dy,dy,
Distributions are created for two different values of x =3.13 and x =1000. Also, the Vegas step-function grid
p(y,,¥,) is plotted (files named vrhoCompton_vrho...) 25

(2) p(y,,y,)= final Vegas step-function grid after integration f(y,,»,) = [p(yl,yz)]_l

Exercise 3: Vegas MC simulation of 2-d yy lumi distribution [vegasCompton.py]

vy Luminosity Rej Method x=3.130, ym = 0.758

nEval=506,389

175
150 2
125 d’L

o s,
50
25

1.0

0.6
0.4 y2

0.6 0.2
yl 0.8 Lo 00

yY Luminosity Rej Method x =1000.000, ym = 0.999

nEval=18,792,975

YY Luminosity Vegas Method x=3.130, ym=0.758

nEval=426,122

175
150 J°L
125
100 dyldyz
75
50
25

1.0

0.6
0.4 y2

0.6 0.2
yl 0.8 Lo 00

Yy Luminosity Vegas Method x = 1000.000, ym =0.999

nEval=35,816

Yy Luminosity Vrho Method x = 3.130, ym =0.758

500 Vegas
400

300
200 PV,Y,)
100

0

1.0

0.8
0.6

0.4 y2
0.2
yl 0.8 Lo 00

vy Luminosity Vrho Method x = 1000.000, ym = 0.999

5000 Vegas
4000
3000
2000 P(V,),)
1000

0

1.0
0.8

0.0

0.6 0.2
yl 0.8 Lo 00

step-function

step-function

Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution

1 [(xulx)z -y)

1{(xﬂ2x)2+(y”2y)2J
Produce a 10,000 event distribution of f(x,y) = Ae i

2 2
2 O)x) y

o oy J +Ae
over the range 0< x, y <5 by modifying vegasCompton.py . Produce the distribution using

the same two methods we used in vegasCompton.py:
L L
1) p(x,y)=1 f(x,y)=Ae AR + Ae A)(i.e., brute force rejection method)
1 1
(

(2) p(x,y)= final Vegas step-function grid after integration f(x, y)= {Alez('") +Ae > m)}[p(x, n -

Compare the number of function evaluations required for these two methods.

The following parameters should be used:
A =10 M. =25 o,=10 M, =2.5 o,=10

y

A,=40 p_=25 o0, =01 n,=25 &, =01
27

Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution

Notes to minimize the number of modifications:

Delete the method dsig dy(xnumber, yy) and directly code the double Gaussian function in the method
dlum _dyldy2(xnumber, yyl, yy2)

The parameter xnumber has no meaning in this exercise. Instead of eliminating it as a function argument,
just leave it in the argument lists and loop over xnumber=3.13 only.

Set y =5 so that you produce a distribution for 0 < x, y <5

The maximum values of the function are near x,y=2.5 instead of x, y=y,_ , so you will have to modify the
calculation of the maximum weight.

28

The CAIN Beam-Beam Simulation Monte Carlo

« Stand-alone Monte Carlo program for simulations of beam—beam
interactions involving high-energy electrons, positrons and photons

« Written by K. Yokoya et al., KEK, Japan, 1984-2011.

« Code is a mixture of FORTRAN 77 and FORTRAN 90/95,
45 000 lines in 400 files

« Code not documented, comments in code scarce. But very good user
manual

« Dedicated, elaborate meta-language for defining Input (65
pages of description in User Manual).

» Output in form of text files with all particle information and TopDrower
histograms

29

CAIN History

@ It started with program called ABEL for beam—beam
interactions (deformation due to Coulomb field and

peamsirahlung) in ee~ linear colliders.

@ Then, after adding interactions with laser beams it was
renamed to CAIN.

@ CAIN 2.0 was written from scratch and allowed for any
mixtures of e, e~, v and lasers, and multiple-stage
Interactions (input data format completely refreshed).

@ Newest version: CAIN 2.42, 27 June 2011, available at:
https://ilc.kek.jp/~yokoya/CAIN/Cain242/

30

CAIN Physical Processes

Q
Q
Q

@

© 00

Q

Classical interactions (orbit deform.) due to Coulomb field.
Luminosity between beams (e™. e~ 7).

Synchrotron radiation by electrons/positrons
(beamstrahlung) and (coherent) pair creation by
high-energy photons due to beam field.

Interactions of high-energy photon or electron/positron
beams with laser field, including non-linear effects of field
strength.

Classical and Quantum interact. with const. external field.

Incoherent et e -pair creation by photons, electrons and
positrons.

Transport of charged particles through magnetic beamline.
Polarisation effects can be included in most interactions. 31

CAIN Output

@ Qutput data (particle properties, luminosities, statistics,
etc.) can be written in specified files at any moment of job
— Can be huge!

@ Graphical output is written only in TopDrawer format
— Very old graphics software, but still useable.

- How to use CERN ROOT system for data analysis?
Q@ For low statistics:

Write particle properties in CAIN output file and read
them by ROOT data analysis program (in C++).

@ For high statistics:
Transmit CAIN output to input of ROOT data analysis
program (run concurrently) through UNIX FIFO pipes.

CAIN | — |FIFO | — | ROOT data analysis program

32

Surprise in collision of unscattered 70 GeV electron beam with 70 GeV

photon + electron beam: pinching instead of anti-pinching
x10°8 rXe
T L Sl M0 e e
3907 o 250 + w130
300;_ :::::w 1.101e+0: E z:::::w :
250 f_ _: 200 :— Integral 1.1019;09
: ; : i } 1
200 = L - .
: ; 150¢ 1 No one predicted
1000 1 this. Would not
: 1 have been noticed
50F 1 without the beam beam
R % G1 Monte Carlo program.

\Ill |
-50—-40-30-20-10 0 10 20 30 40 50

><1o‘|5 | | Xp x10° IYp
[TTTTTTT T[T T T T [TTT T TTTT[TTTTTTTT[TTT] Entries 1346 TTTT | TTTT I TTTT I TTTT I TTTT I TTTT | TTTT I TTTT Entries 1346
140 | - ! -
120 T 80} N e
1001 .
80~ | - o0r §
60 E a0- }]
40 H - : ﬁ |
N] 20— { .
201 + 4 m - 1
B ¢]
Lo bl ke i] - _
—50-40-30-20-10 0 10 20 30 40 50 %0-40-30-20-10 0 10 20 30 40 50

33
This pinching creates very high fields = prob. to radiate y in time slice >1 and CAIN program terminates

	Slide Number 1
	Overview of Course
	What is Monte Carlo Simulation?
	Why use the Monte Carlo Method?
	Monte Carlo Simulation Overview
	A Brief History - I
	A Brief History - II
	Monte Carlo Integration
	Exercise 1: Determination of p using MC integration [piCalculation.py]
	Exercise 1: Determination of p using MC integration [piCalculation.py]
	Monte Carlo Probability Density Function (PDF) simulation
	Method of Inverting the Cumulative Density Function (CDF)
	Slide Number 13
	Slide Number 14
	 Using a CDF to improve MC efficiency
	Using a CDF to improve MC efficiency
	Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]
	Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]
	The Vegas Monte Carlo Integration Algorithm
	The Vegas Monte Carlo Integration Algorithm
	Vegas algorithm
	Slide Number 22
	Slide Number 23
	Use of Vegas integration in MC event sample generation
	Exercise 3: Vegas MC simulation of 2-d gg lumi distribution [vegasCompton.py]
	Exercise 3: Vegas MC simulation of 2-d gg lumi distribution [vegasCompton.py]
	Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution
	Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution
	The CAIN Beam-Beam Simulation Monte Carlo
	 CAIN History
	CAIN Physical Processes
	 CAIN Output
	��Surprise in collision of unscattered 70 GeV electron beam with 70 GeV photon + electron beam: pinching instead of anti-pinching�

