
Monte Carlo Techniques

Tim Barklow
Senior Staff Scientist
SLAC National Accelerator Laboratory
Menlo Park, CA

2

Overview of Course

• Introduction
• Monte Carlo Integration

• Monte Carlo Simulation of Distributions (aka MC Random Number Generation)

• Vegas Monte Carlo Integration and Random Number Generation

• Using these techniques in the CAIN Beam-Beam MC

 Brute Force Rejection Method
 Cumulative Distribution Function (CDF) Inversion Method
 Combining Rejection Method with CDF inversion for improved efficiency
 Example of energy distribution of Compton scattered photons in γγ Higgs factory

 General formulae for integration and error
 Rejection Method
 Example: calculation of π with rejection method
 Error analysis of π calculation

 Importance sampling as the solution to integration in many dimensions
 The Vegas algorithm for both integration and random number generation
 Example of 2-d differential γγ luminosity distribution – brute force rejection vs. Vegas+rej

3

What is Monte Carlo Simulation?

A numerical simulation
method which uses
sequences of random
numbers to solve
complex problems.

4

Why use the Monte Carlo Method?

• Other numerical methods typically need a mathematical
description of the system (ordinary or partial differential
equations)

• More and more difficult to solve as complexity increases

5

Monte Carlo Simulation Overview

MC assumes that many system components are described by probability
density functions which can be modeled with no need to write down equations.

These PDF are sampled randomly, many simulations are performed, particles
are propagated through time using the laws of physics, and the result is the
average over a number of observations

6

A Brief History - I

• Fermi used it to simulate neutron diffusion in the 1930s.
He knew the behavior of one neutron, but he did not have
a formula for how a system of neutrons would behave.

• Method formally developed by John Von Neumann during
WWII, but already known before

Fermi used tables of numbers sorted on a roulette to obtain random
numbers which he then used in his calculations of neutron absorption.

He also used it to demonstrate the
stability of the first man-made
nuclear reactor (Chicago Pile, 1942).
His model had an analogy with heat
diffusion models previously developed.

7

A Brief History - II

• Manhattan Project of WWII (Von
Neumann, Ulam, Metropolis)
– Scientists used it to construct dampers and

shields for the nuclear bomb, experimentation
was too time consuming and dangerous.

• Extensively used in many disciplines especially after the advent of
high-speed computing:
– Cancer therapy, traffic flow, Dow-Jones forecasting, oil well exploration,

stellar evolution, reactor design, particle physics, ancient languages
deciphering,…

8

Monte Carlo Integration
• Monte Carlo integration and the Monte Carlo simulation of probability density functions (PDF’s) are

intimately connected -- they are really one and the same activity.

• General Monte Carlo integration formulae:

1

1() () () ()

() 1 ()

()

=

= = ≈ =

= =

∑∫ ∫

∑∫

     

  



 ,

 ,

 For integration we ac

i

cept all events pulled from

a

 the di

i

stri

l

bu

t

ti

s

o

MC ntegr t

n

i

 on ta stica

N

i
i

i
i

st dx g x dx x f x f x
N N

dx x s f x

x

ρ

ρ

ρ

2
2 2

2

1 1()
1

 
∆ = − −  

∑error: i
i

st f
N N N

() Points in this sum are drawn at random from the distribution ix xρ

9

Exercise 1: Determination of π using MC integration [piCalculation.py]

1

2 2

1

1

1 () 1() () () ()
()

(

0

)

1 0 1 1 1 1

(

1

(,) (,)
0 0

1)
=

= =

< < < <  + <
= = 



=



= =

=

= = ≈

=

∑

∑ ∑∫ ∫

∑∫



     

 





 ,

s
 if & if
 otherwi e other

 ,

se

wi

N N

i

i
i

i

N

i

i

i

g x st dx g x dx x f x f x
N

s

x

N

x

y x y
x y f x y

t f

N N

dx x f

x

ρ
ρ

ρ

ρ

2 2
2 2

2 2

1
2

1 1 1 1() 1
1 1 1 4 4

1 1.6424 4 1
4 4 1

4

1

→

     ∆ = − − = −     − − −     

  ∆ = ∆ = − =  − −  

→ ∞

∑

as

 =

i
i

s s st f
N N N N N N N

N

t
N N

π π

π

π ππ

0 1

1

From the distributions produced by piCalculation.py check that you get this error. Also, the pulls = deviation/error are plotted.
These should give a normal distribution with σ=1 if errors are properly calculated.

10

Exercise 1: Determination of π using MC integration [piCalculation.py]

0 1

1

1000=N

1000=
pull distribution
N

10,000=N

10,000=
pull distribution
N

−measπ π −measπ π
1.642

1
∆ =

−N
π

11

Monte Carlo Probability Density Function (PDF) simulation
• General PDF simulation formulae. Start with the Monte Carlo integration expression:

1 1

1 () 1() () () () () 1
()= =

= = ≈ = = = =∑ ∑ ∑∫ ∫ ∫


       



 , ,

If while performing an MC integration, we wanted in addition to produce an unweighted sample
of events ref

N N

i i
i i i

g x st dx g x dx x f x f x dx x s f
N x N N

ρ ρ
ρ

max

max

() ()
()
()

()

>

  









lecting the distribution we would only accept events pulled from for

which where is a random number chosen after the event has been pulled

from and

i

i
i

i

g x x x
g x rR r x

x

x R

ρ

ρ

ρ max
()
()

() 1

<

=









This
r
is called t

he MC

s

rej

i

ec

ti

o

o

n

n

s

c

m

e

h

t

t

h

is the maximum weigh

o

t for the MC imulat on, ch s

c

e u h t a

for al al . d of produ ing a unweighted s mple
i

The case of
 w ll be

.

i

i

i

g x R
x

x
x

ρ

ρ

max

max

eferred to as the .

 The maximum weight comes up all the time in the production of large MC data sets, since there

is tension between low for good efficiency and

brute force rejection method

R

R max max

ma

()
()

()
()

<

>











 high to guarantee for all .

In practice a small number of events with is tolerated.

i
i

i

i

i

g xR R x
x

g x R
x

ρ

ρ

12

Method of Inverting the Cumulative Density Function (CDF)

()
1 1max max

0 0 0

()

() ' (') ' (') ' (') () (0) ()

0 () 1

()

− −
   

= = − =   
   

< <

∫ ∫ ∫

∫

The cumulative density function of the pdf is defined by

 Changing variables from to gives

x x x

f x

dFr x dx f x dx f x dx f x F x F f x
dx

r x x r

dx f x = = ∝∫ ∫ ∫ so that the distribution is flat in r. Thus one can

immediately map a random number between 0 and 1 directly onto without having
to spend time on a rejection algorithm. This can be

dFdx dF dr
dx

r

(), ?
extremely efficient. The

issue is, given can we invert the function and solve for r x x

13

XCC s-channel @ 125 GeVH sγγ → =

XCC: XFEL Compton γγ Collider Higgs Factory

− −

− −→

60 m before the collision point the 62.5 GeV electon beam is hit with a1 keV X-ray beam
from an X-ray free electron laser (XFEL). In the Compton scattering process the
electrons and photo

e e
e e

µ

γ γ
ns basically exchange momenta, so that after the Compton process the photons

have 62.5 GeV energy and the electron energy is considerably degraded. The 62.5 GeV photons
on each side of the primary collison point annihilate to form a 125 GeV Higgs boson.

One of the issues for γγ colliders is the dependence of the
photon energy spectra on the laser energy

33
2

1
dL

/d
E

 (1
0

 cm
 s

/0
.1

G
eV

)
γγ

−
−

E (GeV)γγ

m
33 2 1

laser
2

bea

4E E
3.1

m

E 86.5 Ge

Lumi top 20% = 7.0 10

V

cm s

e

e

x γ −

− −×

= =

=

33
2

1
dL

/d
E

 (1
0

 cm
 s

/0
.1

 G
eV

)
γγ

−
−

E (GeV)γγ

m
33 2 1

laser
2

bea

4E E
1000

m

E 62.6 Ge

Lumi top 20% = 3.0 10

V

cm s

e

e

x γ −

− −×

= =

=

.
Low integrated lumi concentrated in one spike.
Produce Higgs bosons and not much else

High integrated lumi
creates large background.

14XCC 1 keV X-ray laser 2.4 eV optical laser

15

Using a CDF to improve MC efficiency

2

2 21
4 41

(1))
1

(1

−

− −→

=

∝ − + − +
− −

=

−

For unpolarized electrons colliding with unpolarized photons through the Compton process
E

the spectrum of photons with respect to is given by
 E

where

e

e e

y

d y
y y

yy
d x y x y

x

γ

γ γ

σ

2

1

4

1
1

1

− −

−

−
≈

laser E E
 is the center of mass energy squared of the - laser system in units of the

m

electron mass squared. This expression is dominated by the term , so we can use

 as an

e

e

e

y
d
dy

y

γ γ

σ first approximation to the distribution. It is simple enough that there is

a chance that the integral is invertible. Let's check.

16

Using a CDF to improve MC efficiency

1

0

1 ln(1).
1

1 ln(1)() [ln(1)]
1 ln(1) 1

ln(1) ln(1) 1 (1) 1 (1)

()

−

= − −
−

  −
= − − = = 

− − +  
− = − − = − = − −

∫

∫

 where the maximum energy is

 or or

 is indeed invertible so w

my

m
m

r r
m m m

dy y
y

y xr y dy y y
y y x

y r y y y y y

r y

γ

1
1−

e have a very efficient means to generate a distribution
y

17

Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]

1

() () () () :

(1) () 1 ()

1 1(2) () ()
1 1

−

= = =

= =

 
= =  − − 

∫ ∫For we can try 2 different factorizations of

 (i.e., brute force rejection method)

 (more refin

d dt dy dy y f y y f y
dy dy

dy f y
dy

dy f y
y dy y

σ σρ ρ

σρ

σρ

In comptonSpectrum.py compare the number of function evaluation using the brute force method vs. the
number of function evaluations using the hybrid C

ed rejection method starting with an inverted CDF)

=

DF/rejection method. Also, note that as the center of mass
energy of the electon - laser photon system is increased from x=3.13 to 1000 to 100,000 the photon spectrum
becomes more sharply peaked at y y . What happens to the difference in function evalulations between bru

te

force rejection and hybrid as the spectrum becomes more sharply peaked?
m

18

Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]

/
e e

y E E
γ − −

= /
e e

y E E
γ − −

= /
e e

y E E
γ − −

=

nEval=22,520

nEval=19,315

nEval=1,339,568

nEval=18,696

nEval=82,850,226

nEval=19,148

19

The Vegas Monte Carlo Integration Algorithm

(a) A reliable error estimate for the integral is readily computed.

(b) The integrand need not be continuous for the algorithm to function and,
 in particular, step functions pose no problem. Thus integration over hypervolumes
 of irregular shape is straightforward.

(c) The convergence rate is independent of the dimension of the integral.

(d) The algorithm is adaptive. It automatically concentrates evaluations of the
 integrand in those regions where the integrand is largest in magnitude.

The Vegas algorithm has the following properties:

G. Peter Lepage, 1977: “A New Algorithm for Adaptive Multidimensional Integration “

https://www.sciencedirect.com/science/article/pii/0021999178900049?via%3Dihub

20

The Vegas Monte Carlo Integration Algorithm

Before the Vegas MC algorithm was introduced in 1977, all multi-dimensional MC integration programs,
even those that were adaptive, required Nn integrand evaluations, where N represents the number of grid
points along one axis and n is the dimension of the integral.

The Vegas algorithm avoids the exponential growth in integrand evaluations by using importance
sampling.

1

()() () ()
()

() | () | | () |
−

= =

 =  

∫ ∫

∫



    



   

In importance sampling, the density function in is optimized when

 i.e. function evaluations are concentrated where the integrand

f xx t dx f x dx x
x

x f x dx f x

ρ ρ
ρ

ρ

1 1 2 2() () () ()= ⋅⋅⋅


 is largest

in magnitude, regardless of whether or not the integrand is rapidly changing.

In practice is a step-function with each axis divided up into its own set of intern nx x x x Nρ ρ ρ ρ vals

21

Vegas algorithm

Exploratory phase:
• subdivide integration space into rectangular grid
• perform integration in each subspace
• adjust grid according to dominant contributions
• integrate again, approximate optimal

Evaluation phase:
• integrate with high precision and optimized frozen grid
 or efficiently generate events using optimized frozen grid

22

Vegas algorithm details in 1-d
1 1

0 0

0 1 1

()() ()
()

0 1
1()

−

= =

− = < < ⋅⋅⋅ < = ∆ = −

= − ∆ ≤ <
∆

∫ ∫Consider the integral

Divide the axis into equal segments ,

Define the step-function for i=1,2,...,

First perform

N i i i

i i i
i

f xt dx f x dx x
x

x N x x x x x x

x x x x x N
N x

ρ
ρ

ρ

(

1| () | | () |
−∆ ≤ < −∆

≈

∆
= ≈

∆

= ∝
∆

∑

∑ ∫

 Monte Carlo integration with with integrand evalulation typically M 2000).

Next, define where typically K 2000

 and divide each incr
i

i i i

i i
i

j j
j

x

i
x x x x i x x

M
f xm K

f x

f f x dx f x
x

0 1 1

1

0 1 −

∆ +

= < < ⋅⋅⋅ < = ∆ = −


ement into subincrements.

Since the total number of subincrements is now the subincrements are combined into groups
which serves to define our new set of ,

i i

N i i i

x m

N N
x x x x x x

Iterate in this manner until integral error is optimized.

11 log 1 2−

    
∆ ∆   = − < <   ∆ ∆       

∑ ∑

To avoid rapid, destabilizing changes in the grid, it is better to damp the subdivisions using

 , i i i i
i

j j j j
j j

f x f xm K
f x f x

α

α

23

Implementation Details of Vegas algorithm 2-d

1 1 1 1

0 0 0 0

0 1 1

0 1

(,)(,) () ()
() ()

0 1
0 1

−

= =

− = < < ⋅⋅⋅ < = ∆ = −
− = < < ⋅⋅⋅ < = ∆ =

∫ ∫ ∫ ∫In 2-d we write

Divide axis into equal segments ,
Divide axis into equal segments ,

x y
x y

N i i i

N i

f x yt dx dy f x y dx x dy y
x y

x N x x x x x x
y N y y y y

ρ ρ
ρ ρ

1

12 2
2

2
0 1 0

1()

1()

(,) 1 (,)()
() ()

−

−∆ ≤ < < < −∆

−

= − ∆ ≤ <
∆

= − ∆ ≤ <
∆

−

= ∝
∆∑ ∑ ∫ ∫

 for , i=1,2,...,

 for , i=1,2,...,

1-d algorithm applied along axis with

1

i

i i i i

i i

x i i i
i

y i i i
i

x

i
x x x x y y i yx x

y y

x x x x x N
N x

y y y y y N
N y

x

f x y f x yf dx dy
y x y

ρ

ρ

ρ ρ

12 2
2

2
0 1 0

(,) 1 (,)()
() ()−∆ ≤ < < < −∆

−

= ∝
∆∑ ∑ ∫ ∫

-d algorithm applied along y axis with
i

i i i i

y

i
y y y y x x i xy y

f x y f x yf dy dx
x y xρ ρ

24

Use of Vegas integration in MC event sample generation

1 1 2 2() () () ()
(),

= ⋅⋅⋅




Upon completion of the Vegas Monte Carlo integration, the step-function probability
density function should be a good representation of the function

 and can therefore
n nx x x x

f x
ρ ρ ρ ρ

1 1 2 2

().
() () () ()

()
()

= ⋅⋅⋅









 be used to efficiently generate events according to the function
i.e, one pulls events according to and then applies a rejection

algorithm using , which sh

n n

f x
x x x x

f x
x

ρ ρ ρ ρ

ρ
() (). 

o

.

uldn't deviate too much from a constant value if

 is a good representation of Most if not all particle physics event generators
utilize this techniqu

e

 x f xρ

25

Exercise 3: Vegas MC simulation of 2-d γγ lumi distribution [vegasCompton.py]

1 2
1 2

2

1
1 2

11

− −

− −→

= =

∝ − +

For unpolarized electrons colliding with unpolarized photons through the Compton process
E E

the 2-d differential luminosity with respect to and is given by
 E E

e e

e e

y y

d L y
dy dy

γ γ

γ γ

2 2
1 1 2 2

22 2 2 2
1 1 1 2 2 2

2

4 4 4 411
1 (1) (1) 1 (1) (1)

4 − −

   
− + − + − +   − − − − − −   

= laser E E
where is the center of mass energy squared of the - laser system in units of the

m
electron mass squar

e

e

y y y yy
y x y x y y x y x y

x eγ γ

2

1 2 1 2
1 2

1 2

(1) (,) 1 (,)

(2) (,)

= =

=

In vegasCompton.py the 2-d differential luminosity distribution is created in two ways:

 (i.e., brute force rejection method)

 final Vegas step

ed.

d Ly y f y y
dy dy

y y

ρ

ρ []
2

1
1 2 1 2

1 2

1 2

(,) (,)

3.13 1000.
(,)

−=

= =

-function grid after integration

Distributions are created for two different values of and Also, the Vegas step-function grid
 is plotted (file

d Lf y y y y
dy dy

x x
y y

ρ

ρ s named vrhoCompton_vrho...)

26

Exercise 3: Vegas MC simulation of 2-d γγ lumi distribution [vegasCompton.py]

2

1 2

d L
dy dy

2

1 2

d L
dy dy

2

1 2

d L
dy dy

2

1 2

d L
dy dy

1 2

Vegas
step-function

(,)y yρ

1 2

Vegas
step-function

(,)y yρ

nEval=506,389 nEval=426,122

nEval=18,792,975 nEval=35,816

27

Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution

2 22 2
1 21 2

2 2 2 2
1 1 2 2

() ()() ()1 1
2 2

1 2(,)
, 5

   − −− −   − + − +
   
   = +

<
Produce a 10,000 event distribution of
over the range 0< by modifying vegasCompton.py . Produce the dist

y yx x

x y x y

y yx x

f x y A e A e
x y

µ µµ µ
σ σ σ σ

() ()1 1... ...
2 2

1 2(1) (,) 1 (,)

(2) (,)

− −
= =

=

ribution using
the same two methods we used in vegasCompton.py:

 + (i.e., brute force rejection method)

 final Vegas step-function grid after integ

x y f x y A e A e

x y

ρ

ρ
() () []

1 1... ... 12 2
1 2

1 1

(,)

0

(

1. 2.5

,)
− − − 

=  

= =

 
ration + .

Compare the number of function evaluations requ

r

i

s

re

s

d f

o

or t

l

hese

b

two me

The following paramete h u d e us

th

od

ed:

.

s

 x

f x y A e A e

A

x y

µ

ρ

σ1 1 1

2 2 2 2 2

1.0 2.5 1.0
4.0 2.5 0.1 2.5 0.1

= = =

= = = = =

x y y

x x y yA
µ σ

µ σ µ σ

28

Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution

_ (,)
_ 1 2(, 1, 2)

Notes to minimize the number of modifications:

Delete the method and directly code the double Gaussian function in the method

The parameter has no

dsig dy xnumber yy
dlum dy dy xnumber yy yy

xnumber

5 0 , 5= < <

 meaning in this exercise. Instead of eliminating it as a function argument,
just leave it in the argument lists and loop over xnumber=3.13 only.

Set so that you produce a distribution for my x y

, 2.5 ,= =The maximum values of the function are near instead of , so you will have to modify the
calculation of the maximum weight.

mx y x y y

29

The CAIN Beam-Beam Simulation Monte Carlo

• Stand-alone Monte Carlo program for simulations of beam–beam
interactions involving high-energy electrons, positrons and photons

.
• Written by K. Yokoya et al., KEK, Japan, 1984–2011.

• Code is a mixture of FORTRAN 77 and FORTRAN 90/95,
 45 000 lines in 400 files

• Code not documented, comments in code scarce. But very good user
manual

• Dedicated, elaborate meta-language for defining Input (65
 pages of description in User Manual).

• Output in form of text files with all particle information and TopDrower
histograms

30

CAIN History

31

CAIN Physical Processes

32

CAIN Output

v3rey Very old graphics software, but still useable.

33

Surprise in collision of unscattered 70 GeV electron beam with 70 GeV
photon + electron beam: pinching instead of anti-pinching

1This pinching creates very high fields prob. to radiate in time slice and CAIN program terminatesγ⇒ >

No one predicted
this. Would not
have been noticed
without the beam beam
Monte Carlo program.

	Slide Number 1
	Overview of Course
	What is Monte Carlo Simulation?
	Why use the Monte Carlo Method?
	Monte Carlo Simulation Overview
	A Brief History - I
	A Brief History - II
	Monte Carlo Integration
	Exercise 1: Determination of p using MC integration [piCalculation.py]
	Exercise 1: Determination of p using MC integration [piCalculation.py]
	Monte Carlo Probability Density Function (PDF) simulation
	Method of Inverting the Cumulative Density Function (CDF)
	Slide Number 13
	Slide Number 14
	 Using a CDF to improve MC efficiency
	Using a CDF to improve MC efficiency
	Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]
	Exercise 2: Using a CDF to improve MC efficiency [comptonSpectrum.py]
	The Vegas Monte Carlo Integration Algorithm
	The Vegas Monte Carlo Integration Algorithm
	Vegas algorithm
	Slide Number 22
	Slide Number 23
	Use of Vegas integration in MC event sample generation
	Exercise 3: Vegas MC simulation of 2-d gg lumi distribution [vegasCompton.py]
	Exercise 3: Vegas MC simulation of 2-d gg lumi distribution [vegasCompton.py]
	Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution
	Homework/Exam: Modify vegasCompton.py to produce a double Gaussian distribution
	The CAIN Beam-Beam Simulation Monte Carlo
	 CAIN History
	CAIN Physical Processes
	 CAIN Output
	��Surprise in collision of unscattered 70 GeV electron beam with 70 GeV photon + electron beam: pinching instead of anti-pinching�

