Lecture

Tuesday, November 14, 2023 9:12 AM

Vibrational Analysis

Brian Mercer
Mechanical Science and Engineering

70 ILLINOIS

Mechanical Science & Engineering
GRAINGER COLLEGE OF ENGINEERING

Modal analysis

Modal (frequency) analysis: FEA can be used to predict the deformation modes associated with vibrations (natural
frequencies)
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Knowing the natural vibration frequencies can be helpful, for example, to avoid loading a structure at its natural resonance
frequencies

In theory, a structure has an infinite number of natural frequencies. Generally, the lowest several are most readily observed
and are of the greatest interest
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Consider an undamped spring-mass system with no external loads or friction. Force equilibrium on the system gives:
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This equation can be re-cast into the form below by dividing both sides of the equation by the mass m:

i+ wju=0, where

This second-order ODE has a general solution u = A cos(w,t — ), where the quantityd(gn is called the
— —_—

frequency.

The angular frequency w, has units of radians

per unit time

e.g. Hertz (Hz), or cycles per second. The relationship between
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The amplitude A is arbitrary)This analysis only tells us what frequency the system is predisposed to vibrate at, not the
-—
amplitude at whic ations will occur (the latter requires specifying specific boundary conditions).

Free undamped vibrations in FEA

In the previous example, we had a single degree of freedom: the displacement of the mass on the end of the spring.
M

In an FEA model, we have many degrees of freedom (e.g. nodal displacements). It can be shown that an FEA model with free undamped

vibrations results in a system of equations of the form

M{U} + K{U} =

K is the stiffness matrix of the system (same as in static analysis)
oo ==
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M is called the mass matrix, and depends on the elements being used and the mass density of the material in the model.

{U} contains the nodal degrees of freedom.

To find natural vibration modes and frequencies of the system, we assume a displacement solution(of {U} = {®}ei®t

With this assumption, we can write {U} = —w?{®}e!“*. Substituting into above, we obtain

K — 0?M[{®} =0
This only has an interesting solutiof if det(K = wZM) 0 (eigenvalue proble

For matrices of dimension n X n there will be n values

at satisfy the e

m)

igenvi ation above, and hence n vectors {®;}. These
represent the natural vibration frequencies and deformation modes, respectiveiy. Here, n = number of unconstrained DOFs in the syste
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Natural vibration modes are poss

ion that a structure can take on. Modal analysis gives the deformation
e,

ible frequencies a T

shapes associated with each frequency. There are as many frequencies as DOFs in the model.
€re are as many irequencies as UUrs in the mode-.

Different modes may be more active and prominent for different kinds of boundary conditio:
ncy modes will be most prominently observed (Thomas J. R. Hughes, The Finite Elem

freque!
Finite Element Analysis)

pically, the first ~6 lowest
inear Static and Dynamic

ent Method:

The magnitudes of displacement from such findings are arbitrary; you'd have to apply specific force boundary conditions to know
how severely a structure will actually deform -
e~ — —
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https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-natural-frequency/

Modal analysis: Unconstrained structure

Unlike static structural analysis, it is possible to perform modal analysis with no displacement or rotation constraints on

any node.

In this case, you will obtain several zero-frequency values,

or rotation throug]

/

hich are associated with rigid body modes (rigid translation

Dimensionality Rigid translation Rigid rotation Total rigid body
modes modes modes
A1\ 1 0 1
/] 2] 2 1 3
[ 3/ 3 3 6
| |
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Recall the 4-node quadrilateral (Q4) element that we discussed in a previous lesson.

Suppose we model ure using a single Q4 element.
each of the boundary conditions liste B

body mode (and hence zero-valued):

ow many vibrational frequencies would be obtained from

elow, and, how many of those frequencies would be associated with a rigid-

1. All DOFS on the left edge of the element are fixed (cantilever-style support)

w N

Node 3 displacements are fixed, all others are unconstrained

G L

No displacement boundary conditions are applied to the structure
P
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Dimensionality Rigid translation Rigid rotation Total rigid body
3 modes modes modes
Uy u}z/ 1 1 0
ik 2 2 1 3 D
: u? 3 3 3 6
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Modal analysis example

You wish to use FEA to find
model without any physical

e Iowest natural frequency o

free, unconstrained vibration.
-

The FEA software you

asks you how many vibrational frequencies

the tuning fork pictured below. You create a fully 3D

e fork in order to find the lowest frequency associated with

Dimensionality Rigid translation Rigid rotation Total rigid body
modes modes modes
1 1 0 1
2 2 i |
3 3 3 76

What is the minimum number you sho
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u would like it to compute for your model.
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To find the natural vibration frequencies of an FEA model:

. Create mesh, Speﬂﬁm@mper i impose any displacement boundary conditions that
constrain the structure of interesf. Mass density is a required material prope
(this parameter is not needed for static structural analysis

. Perform a frequency (eigenvalue) analysis using FEA software of your choice. Be sure to request
areasonable number of frequencies to be reported. Generatly, the lowest ~6-10 modes (not

associated with rigid body motion) are of interest
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