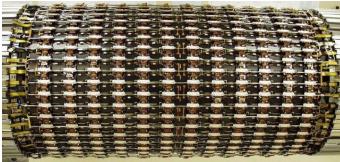
Physics 524

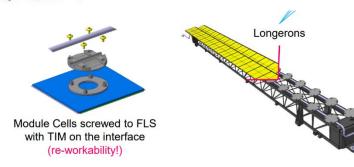
Survey of Instrumentation & Laboratory Techniques: Unit 5: Cooling & Thermal management

Lecture 4 of 4 (13:1)

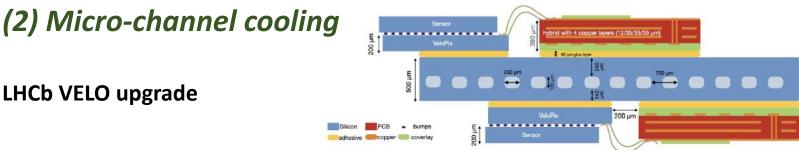

(5.7) Examples from cooling silicon tracking detectors in particle physics (ATLAS, CMS, LHCb)

We've seen some examples from the present running of ATLAS:

- Saturated Fluorocarbons of the form C_nF_(2n+2) like C₆F₁₄ (current use as liquid coolant in parts of the CMS Silicon tracker) and C₃F₈ (current use in most of the ATLAS Silicon tracker) which have respective GWP₂₀ of around 6640 & 5890 x CO₂.
- New upgraded trackers are however being built for the High Luminosity phase of LHC to run from 2029-2041
- A core aim in these detectors is to use low Global Warming Potential coolants
- Any coolant must be non-flammable, non-toxic, non-oxone depleting, (electrically) non-conductive, radiation resistant and have low or zero GWP
- CO₂ cooling is being pushed hard at CERN but has problems of high operating pressure and a limiting evaporating temperature of -56 °C (triple point temperature where 3 phases of CO₂ co-exist (liquid, vapor, solid CO₂ 'snow')


(5.7) Examples from cooling particle physics Si trackers (ATLAS, CMS, LHCb) Two distinct types of detector cooling geometry:

(1) Tube and block 'DNA'


ATLAS barrel SCT (present)

Mited PAthed PAT

ATLAS ITK Barrel longerons and Si module block attachment (future HL-LHC)

Disadvantages: longer heat conduction path (more interfaces) Si -> (colder) coolant

Advantages: shortest heat conduction path to coolant: coolant can be warmer: Disadvantages: fraglity issues: channels etched in silicon and cover plate attached

Micro-channel cooling: more on the LHCb VELO upgrade

O.A. de Aguiar Francisco, W. Byczynski, K. Akiba et al.

O.A. de Aguiar Francisco, W. Byczynski, K. Akiba et al.

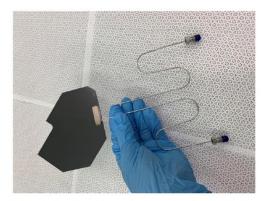
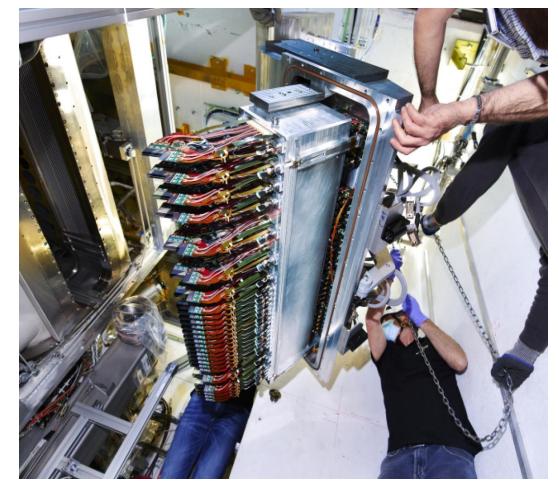



Fig. 20. Microchannel assembly, consisting of a microchannel cooler soldered to a fluidic connector, ready to be equipped with VELO module components.

https://www.youtube.com/watch?v=RmlQwLdfFZg

Micro-channel cooling: more on the LHCb VELO upgrade Recent mastery of evaporative CO₂ cooling in microchannels

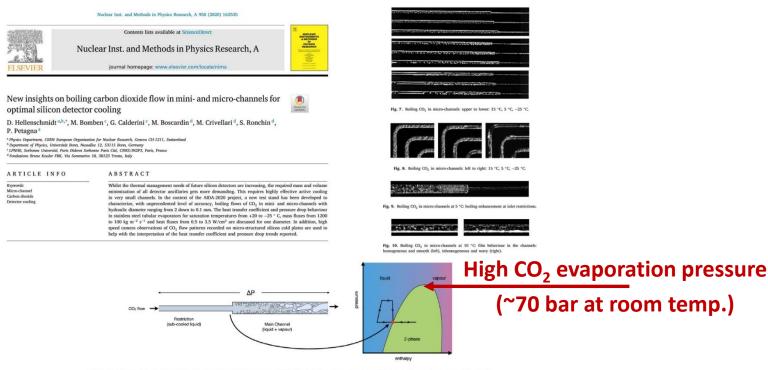
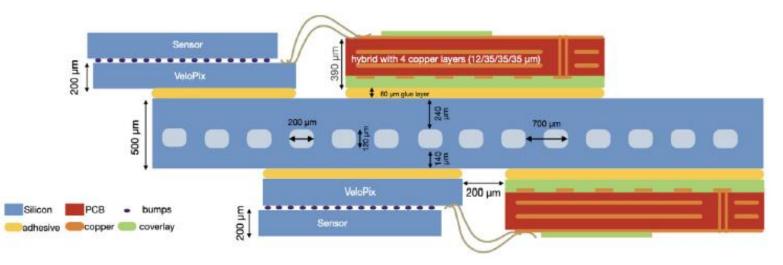
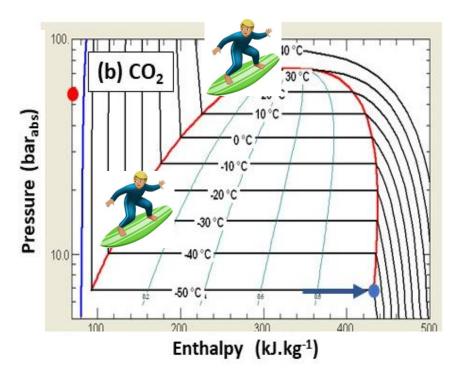



Fig. 2. The left side of the figures shows the typical channel shape for the bi-phase CO₂ microchannel cooling implementation. The pressure drop at the point where the channel expands should bring the coolant to the saturation point as it enters the region of the detector to be cooled. The diagram on the right illustrates the principle of the Two-Phase Accumulator Controlled Loog (2PAG) cooling concept used in 1 HO (6).

Despite these evident successes, the coolant is not directly passing through the detector chips, just through a heat collector plates onto which they are bonded which contain 200 x 120 micron etched microchannels .

So the silicon pixel detectors and their readout electronics are *almost directly* cooled by fluid evaporating in microchannels.


We can therefore ask:

- will processor chips ever have microchannels etched into them for direct coolant flow?
- will this coolant be liquid, or evaporative for reduced mass flow?
- how would the cooling pipes be connected?
- what would the (necessarily electrically non-conductive) fluid be: a fluorocarbon, CO₂ or a new low GWP fluid, for example from the 3M "NOVEC" range?

The CO₂ problems:

(1) High evaporation pressure at room temperature (60-70 bar) the detector has to 'surf ' down the saturated vapor line to the operating evaporation temperature of -30 → -40 °C (pressure around 12 - 18 bars): fatigue cycling an issue in microchannels..?

(2) The high triple point temperature of -56 °C limits the lowest temperature attainable in the tubes of a tube & block cooling system: may not be cold enough for operation of Si detectors after years of irradiation in the LHC High Luminosity program (2019-41)

Low GWP Alternatives to CO₂:

(1)Noble gases like Xenon and Krypton

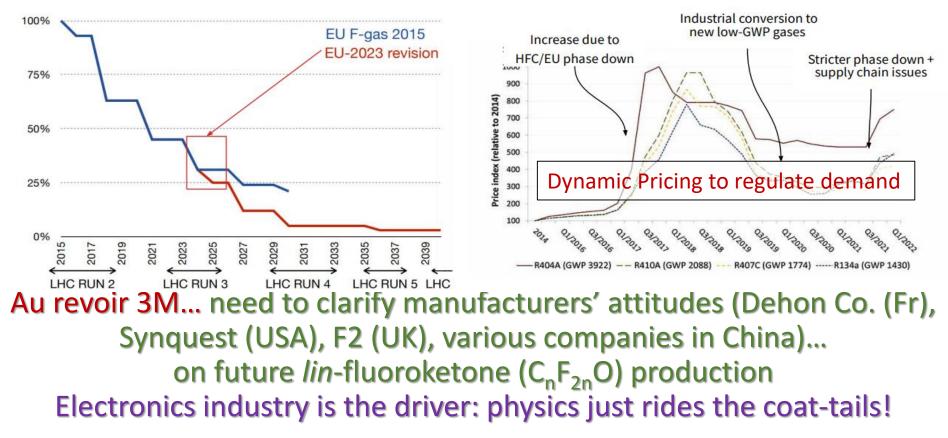
- Very expensive and in very short supply, particularly since the war in Ukraine.
- Complex transcritical circulation for Krypton (outside the scope of this unit);
- Xenon probably just squeaks in (~50 bar @ 15 C) but still has relatively high pressure evaporation at room temp, but no triple point problem (-112 °C)

(2) Fluoroketone ($C_n F_{2n} O$) replacements for saturated fluorocarbons ($C_n F_{(2n+2)}$)

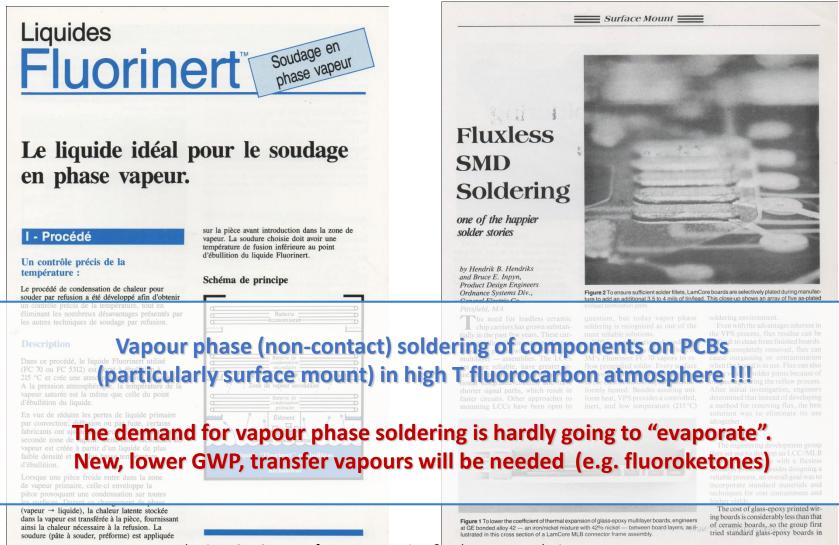
- The substitution of two fluorine atoms with an oxygen atom can reduce the GWP to zero: if the oxygen atom is on the end or on a side-arm of the molecule (see next slide);
- Ultraviolet scission of the molecules in the upper atmosphere des not created long-lived debris molecules (references given in unit support notes);
- $(C_n F_{2n} O)$ molecules with the same number of carbons as their $(C_n F_{(2n+2)})$ partners will hve similar thermodynamics (molecular weight difference = 22 units);
- 3M NOVEC 649 (C₆F₁₂O) authorised for use as a C₆F₁₄ replacement at CERN (liquid cooling)

A Fluoroketone ($C_n F_{2n} O$) replacement for a saturated flurorcarbon ($C_n F_{(2n+2)}$)

Thermophysical Properties of NOVEC 649 (C₆F₁₂O) & C₆F₁₄ (at 25°C except where noted: after [7.15])

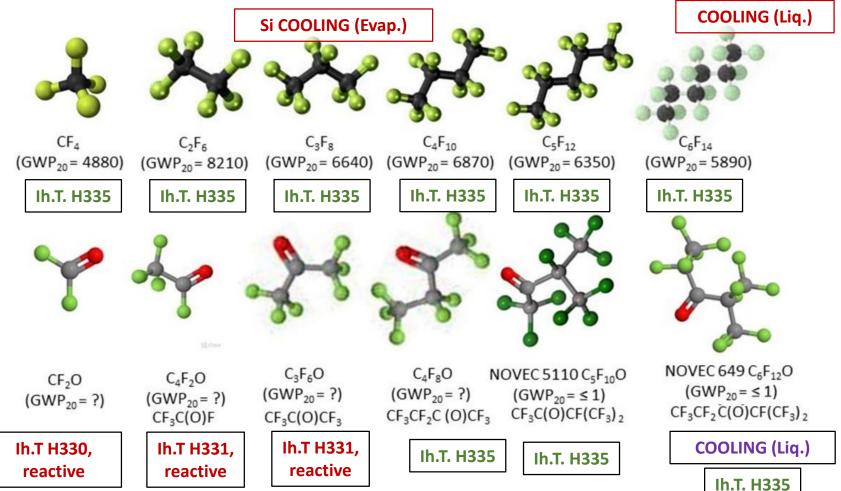

Fluid thermophysical property	NOVEC 649: $C_2F_5C(O)CF(CF_3)_2$ Perfluoro-2-methyl-3-pentanone ($C_6F_{12}O$ fluoro-ketone)	C ₆ F ₁₄ (Perfluorohexane, Saturated fluorocarbon)
Boiling temp @ 1 atm (°C)	49	56
Critical Temp (°C)	169	178
Critical Pressure (MPa)	1.87	1.89
Freezing temperatre (°C)	< -100	< -100
Specific heat (J.kg ⁻¹ K ⁻¹)	1103	1050
Density (kg.m⁻³)	1610	1680
Kinematic viscosity (cSt)	0.42	0.4
Latent Heat (J.kg ⁻¹)	88	88
Vapour Pressure @ 25 °C (kPa)	40.4	30.9
Vapour Pressure @ 100 °C (kPa)	441	350
Water solubility (ppm _w)	21	10

Physics 524: Survey of Instrumentation & Laboratory Techniques:


Unit 5: Cooling & Thermal management © G. Hallewell (2024)

On the turning away...

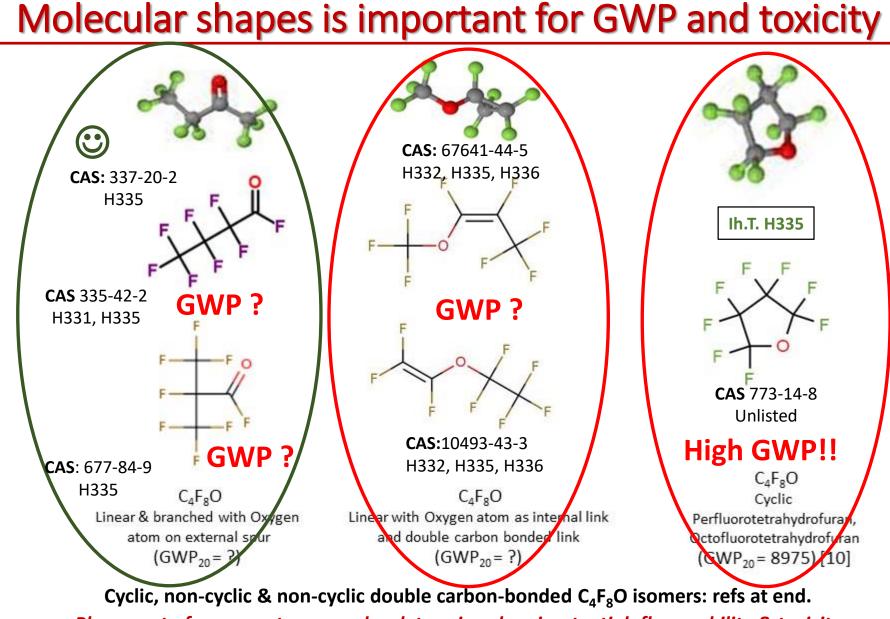
Example: The uncertain ECHA (European Chemicals Agency) route to fluorocarbon (PFC, PFAS...) prohibition (A path paved with impracticalities..?)


Massive use of fluorocarbons in electronics industry for semiconductor manufacture and soldering complex computer mother boards with SMD components

https://link.springer.com/article/10.1140/epjp/s13360-023-04703-w

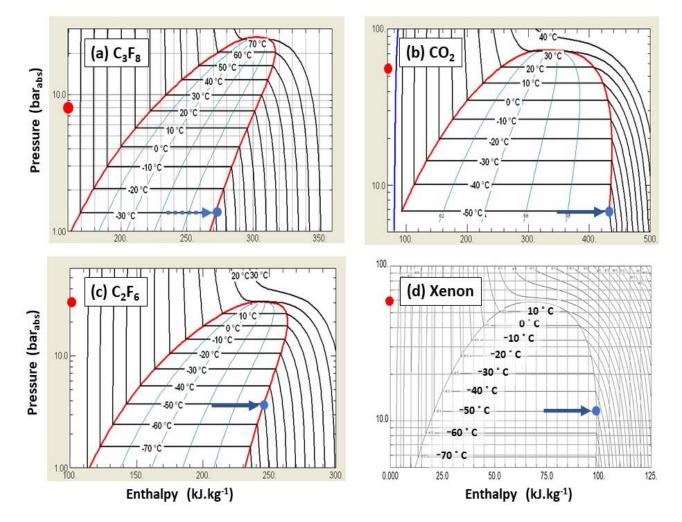
Saturated fluorocarbons ($C_n F_{(2n+2)}$) and their Spurred fluoroketone ($C_n F_{2n} O$) analogs

(with 20 year Global Warming Potentials, where measured)



GHS Classification Criteria for Inhalation Toxicity

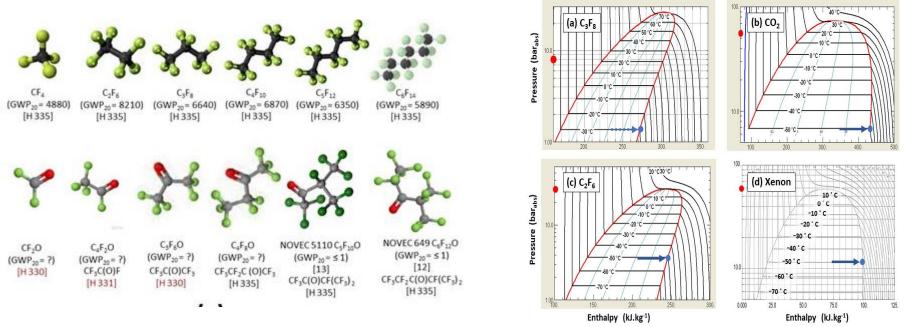
H330	Fatal if inhaled
H331	Toxic if inhaled
H332	Harmful if inhaled
H333	May be harmful if inhaled
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled
H335	May cause respiratory irritation
H336	May cause drowsiness or dizziness


H310	Fatal in contact with skin
H311	Toxic in contact with skin
H312	Harmful in contact with skin
H313	May be harmful in contact with skin
H314	Causes severe skin burns and eye damage
H315	Causes skin irritation

Acute Toxicity	Category 1	Category 2	Category 3	Category 4	Category 5	
Oral (mg/kg)	5_	>5	>50 <300	>300 <2000	Criteria Anticipated oral LD ₅₀ between	
Dermal (mg/kg)	≤50	>50 <200	>200 <1000	>1000	 2000 and 5000 mg/kg; Indication of significant effect in humans;* Any mortality at class 4;* 	
Gases (ppm)	≤100	>100	>500	>2500		
Vapors (mg/l)	⊴0.5	>0.5	>2.0 <10	>10 <20	Significant clinical signs at class 4;*	
Dusts & Mists (mg/l)	⊴0.05	>0.05 ≤0.5	>0.5 ≤1.0	>1.0 _5	 Indications from other studies;* *If assignment to a more hazardous class in not warranted. 	

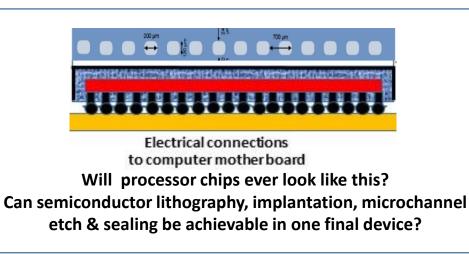
Placement of oxygen atom can also determine chemi-potential, flammability & toxicity

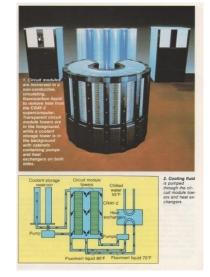
Some Thermodynamic comparisons two convenient SFCs, CO₂, Xe (F-K thermodynamics should be similar to same carbon order SFCs)

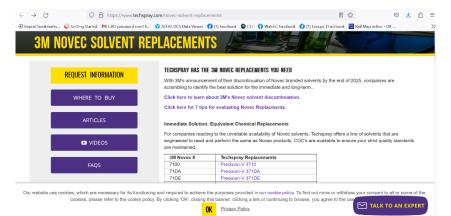


(5.7) SWOT analysis of cooling fluids HL-LHC

Strengths CO ₂ Non-flammable, non-toxic, electrical insulator, non- ozone-depleting, radiation resistant, GWP=1	Weaknesses CO ₂ High pressure circulation (60 bar) at ambient temp before cooldown to operating temp High triple point (-56°C)	Strengths C ₂ F ₆ Non-flammable, non-toxic, electrical insulator, non- ozone-depleting, radiation resistant	Weaknesses C ₂ F ₆ Very high GWP (around 6000 x CO)	
Threats CO ₂ High triple point may make Si tracker operation problematic: less thermal 'headroom' after heavy irradiaton ('thermal runaway' phenomenton)	Opportunities CO ₂ Extensive R&D program at CERN Evaporative coolant of choice for ATLAS, CMS for start of HL- LHC program	Threats C ₂ F ₆ Production will be phased out unless a strong motivation from semiconductor manufacture industry	Opportunities C_2F_6 Proved to decrease the operating temp of an ATLAS SCT thermal model in blend with 75% C_3F_8	
Strengths xenon Non-flammable, non-toxic, electrical insulator, non- ozone-depleting, radiation resistant, GWP=0	Weaknesses xenon High pressure circulation (50 bar) at ambient temp before cooldown to operating temp (amost transcritical)	Strengths C _n F _{2n} O Non-flammable, non-toxic, electrical insulator, non-ozone- depleting, radiation resistant, GWP=0	Weaknesses C _n F _{2n} O	
Threats xenon Very difficult future procurement (war in Ukraine) (10 ⁻⁸ atmospheric content.)	Extremely expensive Opportunities xenon Could find expertise In particle physics community for fabrication of circulators: already used in dark matter experiments	Threats C _n F _{2n} O Large scale industrial production may depend on the phasing-out of SFCs, needs of semiconductor manufacture industry: Toxicity, material compatibility need further study.	Opportunities C _n F _{2n} O Expertise in particle physics community for 3M NOVEC 649 (C ₆ F ₁₂ O)	


• Last problem (6): See separate sheet – really one for the sleuth:


- while a new C_3F_6O isomer might have similar thermodynamics to C_3F_8 , at low to zero GWP, ($C_3F_8 \& C_3F_6O$ differ in mol. wt. by 22 units) it is not perfect for cooling a processor chip at room temperature. An evaporation pressure nearer 1 bar_{abs} would be better). What fluid (or even blend of fluids) in the $C_nF_{2n}O$ spectrum might be better, and why?
- Hint: the figures below may help in this.


So where does this leave the option of immersion cooling of processors, or the direct liquid cooling of processor ships themselves thru microchannels?

3M seem to have lost enthusiasm to produce any more fluorinated fluids after 2025, but companies like F2 Chemicals (Preston, UK), Astor (Ru), Synquest (FL), Techspray (GA) continue (probably many others: e.g.China)

Some 3M NOVEC fluids are HFCs with GWPs in the ranges of hundreds: Better to concentrate on $C_nF_{2n}O$ molecules over the full carbon spectrum with GWP = 0. But the needs of the semiconductor & electronics industries will be determinant...