

Physics 524
Survey of Instrumentation and Laboratory Techniques

2024

University of Illinois at Urbana-Champaign

Unit 1b: Anaconda Scientific Python

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

2

Goal for this week .. 2	
A table of useful python stuff .. 3	
What’s under the hood ... 3	

Bits, bytes, and words .. 4	
hardware representation of a bit .. 4	
bytes, words ... 4	

What does a word actually represent? ... 5	
ASCII ... 5	
integers ... 5	
floating point and precision ... 5	

GG’s simple-minded computer model .. 6	
Memory ... 6	
CPU ... 6	

Installing Anaconda Python ... 7	
Configuring Python ... 10	
Basic concepts ... 10	

Variables and assignment statements .. 10	
Kinds of variables .. 12	
Mathematical operations .. 13	
Logical operations ... 14	
Scripts .. 15	
Lists and arrays .. 16	
Loops ... 18	
A loop to calculate the sum of a few squares .. 19	
Other loop matters ... 20	
Functions and modules .. 21	

In-class machine exercise 1: an infinite series for p .. 22	
This week’s homework assignment (due at the first class meeting next week) 25	

1. A much better infinite series for p ... 25	
2. Relativistic spaceflight .. 25	

 Goal for this week

• Learn what’s inside the box: a simple model of a computer;
• Install Anaconda’s spyder Python developer’s environment on your laptop;
• Experiment with Python by typing commands directly into the iPython console;
• Learn about some of the basic tools in programing, including loops, conditional

statements, and mathematical operations;
• Write and execute a program that sums (part of) an infinite series for p;

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

3

A table of useful python stuff

What’s under the hood

I suspect that most of you aren’t all that familiar with what is going on inside your
laptops at the most primitive level, where it is appropriate to think of your computer as a
complex web of voltage and current sources, and capacitances, and interconnects, and field effect
transistors. So let’s sand all the paint off, and discuss an atomistic model for what’s at the heart
of our extraordinarily sophisticated personal computers. We’ll do this by constructing a simple,

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

4

basic, unsophisticated model of a computer that we could build from parts that were available
(except for the DRAM chip) decades ago.

Bits, bytes, and words

hardware representation of a bit
First things first: how do we construct a circuit that can represent a zero or a one? We’ll

assign zero to 0 volts and one to 1.5 volts.
Here’s one way to do it, with one amplifier charging (or discharging) a small capacitor

when storing a bit (a 1 or a 0) in memory, and another amplifier reporting the capacitor voltage
when reading the value stored in memory. No current flows into the right side amplifier’s input,
so it doesn’t drain charge off the capacitor.

The word “bit” is a contraction of “binary digit.” In real DRAMs (Dynamic Random Access
Memories) the switch is a field effect transistor.

bytes, words
We group eight bits together to form a byte. If we assign the nth bit in a byte to represent

2n, one byte can hold a value anywhere from 0 (000000002) to 255 (111111112), where I am
using a “2” subscript to indicate base 2.

We group bytes together to form words. The number of bytes per word depends on the
architecture of a particular memory or processor chip; common values are two, four, and eight
bytes per word. Most of your laptops are 64-bit machines, corresponding to eight-byte words.

It is convenient to represent the content of a word using hexadecimal notation, with two
hexadecimal digits per byte. A couple of examples, in which I’ve separated the two halves of a
byte by a space for clarity:

• 0011 11112 is 3F16 or 6310
• 0000 00002 is 0
• 1111 11112 is FF16 or 25510.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

5

In Python you’d tell the computer that you’re writing the hexadecimal representation of a

number by preceding the hex digits with 0x. Note that it’s a zero, not the letter “o” before the
“x.” You’d use 0b for binary and 0d for decimal, which is the default. In other words, 0x3F =
0b00111111 = 0d63 while 0d63 = 63.

What does a word actually represent?
For readability I’ll leave a blank space between bytes when writing hexadecimal

representations of 64-bit words. Let’s say you find that a word in memory contains 0x 20 20 20
20 20 63 61 74. What does it actually mean? That depends on the context.

ASCII
If you are told that the word holds the ASCII (“American Standard Code for Information

Interchange”) representation of something, you’d find a table of ASCII codes and translate it as
“ cat” since 0x20 is a blank space, while 0x63 is a “c” and so forth.

integers
If another word contains 0x 00 00 00 00 00 00 00 2B and is known to represent an

integer, you’d unpack it as (2 × 16) + (B × 1) = 32 + 11 = 43 since B is the hexadecimal
representation of 11. If the high order bit were set so that our word contained 0x 80 00 00 00 00
00 00 2B, we’d interpret that as a negative integer instead. (There are some subtleties in how
computers represent negative numbers, which I will skip. See material on the web about “one’s
complement” and “two’s complement.”)

floating point and precision
The representation of “floating point” numbers is quite different. By floating point, I

mean something with a decimal point, e.g. 3.1415926535… and the like. The IEEE (Institute of
Electrical and Electronics Engineers) standard for 64-bit floating point is this:1

what which bit(s) range of values
sign 63 (1 bit) [0, 1]

exponent 52 – 62 (11 bits) [-1022, 1023]
significand 0 – 51 (52 bits) [0, 4.5035996 × 1015]

For example, 2.71828 = 271,828 × 10-5; here 271,828 is the significand while -5 is the exponent.

The guaranteed precision corresponds to slightly less than 16 decimal digits. There are
some additional subtleties involving “cohorts,” “hidden bits,” and so forth. The Wikipedia article
I cite as a reference has a good discussion of the details.

Here’s what I mean by “precision.” Imagine that you add the following numbers:

1 https://en.wikipedia.org/wiki/Floating_point

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

6

The available machine precision could yield the following surprising result:

It’s just something to keep in the back of your mind when you write code.

GG’s simple-minded computer model

Memory
In 1945 John von Neumann proposed2 that a “very high speed automatic digital

computing system” could use memory to store both its program and the data on which the
program would act. It was a brilliant realization, and that’s how modern computers have been
designed ever since.

We program our computer by loading the appropriate instructions and data into memory,
then allowing the computer’s CPU (Central Processing Unit) to read (and execute) instructions
from memory.

CPU
The heart of a computer is its central processing unit. In the following diagram I show a

model for a simple CPU, including its communication lines and one register, a part of the CPU
that communicates with the outside world.

Each time the system clock “ticks,” the Logic unit fetches, then executes an instruction
from the memory address specified in the Program counter.
Instructions for our toy computer might contain three fields: an operation code (op code) and a
pair of addresses a1 and a2. To add the contents of a1 to the contents of a2, storing the result in
a2, we’d have the operating system load an instruction into memory with the appropriate op code
and address values.

2 https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

7

That’s enough about hardware for the time being.

Installing Anaconda Python

Please copy the installation file from the USB thumb drive to a sensibly-named folder on
your system disk. After you have copied (or downloaded) the installation file, execute it to install
Python. On a Mac the installer will create an icon/shortcut to “Anaconda Navigator” that will
allow you to launch applications. On a Windows machine you might need to access Navigator
here: Start ➙ All Programs ➙ Anaconda3 (64-bit) ➙ Anaconda Navigator.

The Anaconda software contains a number of different programs. We will be working

with spyder, the “Scientific Python Development Environment.” This is an integrated

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

8

development environment (IDE), which incudes an editor, a control console, a debugger, a table
of program variables, and other tools.

Click on the spyder launch button in the navigator window. The development
environment workspace will open.

The window on the left is an editor, which you will use to create script files (program

files containing executable instructions. The paired triple quotes enclose comments). Here’s a
screen shot of part of it.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

9

The upper right window allows you to look at the contents of “objects” (more on this
towards the end of the course), variables, and file directories. Note the tabs at the bottom of the
window for selecting what is shown. You will probably find the file and variable explorer tabs
most useful. Sometimes the file modification dates shown by file explorer do not update when I
save changes to a file! That is surely a bug.

The lower right window shows an iPython console, a sort of operator’s station from

which you can issue commands to Python. It also displays program output.

If you trash the iPython console by mistake you can open a new one through the

“Consoles” menu at the top of the workspace window.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

10

Configuring Python

There are a few parameters that you should set. Go to the Python preferences menu and
do this:

preferences : run : default working directory
 set to a sensibly-named folder that will hold all your scripts

preferences : current working directory : console directory
 set to the same folder as that which will hold your scripts

preferences : iPython console : graphics : Backend
 set to “Automatic”

preferences : History log : Settings
 set “History depth” to 2000 entries

Quit spyder, then restart.

Basic concepts

Take a look at the table of useful Python stuff on the inside front cover of the course
packet. I am going to go through most of the information presented there, but quickly so we can
being writing code.

Variables and assignment statements
A variable is a name assigned to one location in memory. You manipulate the contents of

that memory location by referring to it by the name of the variable. For example, to associate the
name “A” with a location in memory, then assign it the value 12, you would type the following
into the iPython console window.

A=12

The computer does something analogous to the “copy a1, a2” machine instruction we discussed
earlier, with a1 holding the address of a word in memory that contains the integer 12, and a2
holding the memory address that has been assigned to the variable A.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

11

To define a new variable as the sum of A and the number 4 you would type:

B=A+4

To inspect the value of B you would just type its name into the console:

B

Note that a semicolon at the end of a line suppresses the normal output produced in response to
that line:

B;

yields no output. Here is a screen shot of the console with the above commands.

You can place multiple assignments on a single line by separating them with semicolons.
Note that variable names are case sensitive. Take a look:

Keep in mind that an equal sign in Python is actually an assignment of value, and not the

same thing as an equation expressing the equivalence of the left and right sides. For example, to
increment the value of A by 1 we’d do this:

A=A+1

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

12

Kinds of variables
There are many different kinds of variables that are defined in Python. For example, the

statement

A=12 # inline comments begin with an octothorpe

defines an integer variable. The statement

C=2.71828 # C is a floating point variable

defines a floating point variable, a numerical variable which is allowed to take on non-integer
values. The statement

D=(1+2j) # D is complex

defines a complex variable with the value 1 + 2i. () Note the use of j instead of i. It is
fine to mix together integer, floating point, and complex numbers in arithmetic statements:

In [1]: A = 12;
In [2]: B = 2.5;
In [3]: C = (5 + 7j);
In [4]: A + B + C
Out[4]: (19.5+7j)

The statement

MyName=”George” # a string!

defines a string. You may use single quotes if that is your preference. It is fine to enclose
whitespace and single quotes inside double-quoted strings:

In [1]: AnotherString = "George's car"
In [2]: print(AnotherString)
George's car

A string is really a list of individual characters; you can access the nth character in a string this
way (note that position 0 yields the first character):

In[11]: AnotherString[2]
Out[11]: 'o'
In[12]: AnotherString[0]
Out[12]: 'G'

Boolean (logical) variables can only take the values True and False.

 i = −1.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

13

In [1]: ObviouslyTrue = 3 > 2; print(ObviouslyTrue)
True

Python is able to convert most variables from one type to another as necessary.

Mathematical operations
Here are examples of some of the mathematical operations that Python supports. Many

are self explanatory.
In [1]: a=8+9; print(a) # addition, with two statements on one line!
17

In [2]: a=8/9; print(a)
0.8888888888888888

In [3]: A=3**2; print(A) # ** means exponentiation. NB: ^ is NOT!!
9

In [4]: print(25**0.5) # one way to take a square root
5.0

In [4]: print(pow(25,0.5)) # another way: “pow” is power
5.0

The % sign is used to determine the modulus of one number with respect to another.

What I mean is this: the value of a % b is the remainder when a is divided by b. Some examples:

In[1]: 7 % 4
Out[1]: 3
In[2]: 14 % 7
Out[2]: 0
In[3]: 13 % 7
Out[3]: 6

You may need to import a module of routines that aren’t already known to Python. Your

Python installation includes lots of these, and Python knows how to find them if you use the
import command. You will eventually find it convenient to define some of your own modules.
(That’s for later!) Here’s how this works.

In [1]: print(sqrt(25)) # this won't work yet
NameError: name 'sqrt' is not defined
In [2]: import numpy as np
In [3]: print(np.sqrt(25)) # now it will work.
5.0

Keep in mind that your computer’s internal workings use binary, not decimal, so
sometimes there can be surprises. For example, the internal representation of 0.1 is inexact, as
you can see in the following:

In[1]: 0.1 + 0.2
Out[1]: 0.30000000000000004

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

14

There are ways to improve the precision used by Python in its calculations, but the
language isn’t nearly as versatile as some others in its options for greater accuracy. For now,
keep in mind that sometimes zero isn’t quite zero:

In[1]: 0.3 - 0.1 - 0.2
Out[1]: -2.7755575615628914e-17
In[2]: abs(0.3 - 0.1 - 0.2) == 0
Out[2]: False
In[3]: abs(0.3 - 0.1 - 0.2) < 1.e-16
Out[3]: True

Here is something you can do to learn the level of precision offered by your computer’s
Python. (A “floating point” number is a real number with a decimal point. A “long double
precision” number is a floating point number with a few extra digits of precision on Macs and
some (but not all) windows machines. First import “numpy,” a built-in numerical python
module.

In[1]: import numpy as np # import the numpy module, refer to it as “np”

In[2]: np.finfo(np.float) # ask for information about floats
Out[2]: finfo(resolution=1e-15, min=-1.7976931348623157e+308,

max=1.7976931348623157e+308, dtype=float64)

In[3]: np.finfo(np.longdouble) # ask for information about long doubles
Out[3]: finfo(resolution=1e-18, min=-1.18973149536e+4932,

max=1.18973149536e+4932, dtype=float128)

Logical operations
It is easy to perform logical test of the values of variables and constants. Note the use of

the double equal sign.
In [1]: 1==2 # values are equal
Out[1]: False
In [2]: 2==2
Out[2]: True # note that True and False begin with upper case
In [3]: 1<2 # first less than second
Out[3]: True
In [4]: 2<=2 # first less than or equal to second
Out[4]: True
In [5]: 1>=2 # first greater than or equal to second
Out[5]: False
In [6]: 6!=9 # first is not equal to second
Out[6]: True
In [7]: 6!=9 and 6==9 # logical AND
Out[7]: False
In [8]: 6!=9 or 6==9 # logical OR
Out[8]: True

To execute a block of instructions only when a particular condition is true, indent the
block of instructions following an “if” statement. Note that the if statement must end with a
colon.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

15

In[1]: LogicalValue = 4
In[2]: if LogicalValue < 5:
 ...: print("LogicalValue is less than 5")
 ...:
LogicalValue is less than 5

It is very clumsy to execute if-blocks this way! A better way is to put a string of executable
instructions into a script file, then execute the script.

Scripts
To work with scripts, you will first need to tell spyder where to find them. Begin by

creating a folder in which you will store your scripts. (I’ve named mine “python_scripts.”) Go to
the “Global working directory” window in spyder’s preferences to set the startup directory.

The editor opens with an untitled default script that begins with a (three-quotation mark
delimited) comment.

.

Enter some well-commented code into the editor window, then save the file. In the

following screen shot I have an if-then-else-if block, followed by an example of running it from
the console.

The pattern of indentations is important: take careful note of it. This is how Python
defines what code is inside an if block (or a loop) and what is outside. Also note the presence of
the colon after the logical expression to be evaluated.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

16

Run the program from the IPython console by typing “run” followed by the file name

(leave off the “.py” filename extension.). It is possible that you will first need to tell the console
to load the file: do this by typing “import” then the filename, omitting the .py extension. It is
unclear to me when you actually need to do this!

Lists and arrays

Lists and arrays are rather like subscripted variables: a0, a1, a2, … But there is a
fundamental difference between the two: Python, before the import of a library like numpy, only
knows about lists. A list can comprise elements of different types; if you try to “add” two lists
you’ll produce a concatenation of the two lists, rather than an element-by-element sum. For
example,

In[1]: a = [1, 2, "cat"]
In[2]: b = [3, 4, "dog"]
In[3]: print(a + b)

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

17

[1, 2, 'cat', 3, 4, 'dog']
In[4]: type(a)
Out[4]: list

Note the use of the “type” function to ask Python what type of object is the variable a.
Here’s another way to define a list with 8 elements, all of which are set to 3.

In [1]: a=[3]*8; a
Out[1]: [3, 3, 3, 3, 3, 3, 3, 3]

Recall that the first list element has index value 0, not 1. For example,

In [1]: a=[1, 2, 3, 8]
In [2]: print(a[0],a[3]) # print the first and last
1 8

You will certainly do more with arrays than with lists. Numpy can create them and do
various operations on them. Download this script from the course web site and run it:

This file is unit01_ArrayOperations.py. It contains a few examples
of operations on lists and arrays

George Gollin, University of Illinois, May 20, 2016

use numpy to create arrays, which can be used for arithmetic operations.
aa = np.array([2, 3, 5])
bb = np.array([7, 9, 11])

do an element-by-element sum:
print("aa = ", aa)
print("bb = ", bb)
print("aa + bb = ", aa + bb)

calculate an element-by-element product:
print("aa * bb = ", aa * bb)

add a scalar to every element of an array. Note the "newline" \n.
print("\naa + 100 = ", aa + 100)

multiply every element of an array by a scalar
print("\naa * 6 = ", aa * 6)

take the sqrt of every element of an array
print("\nnp.sqrt(aa) = ", np.sqrt(aa))

take the square of every element of an array
print("\naa**2 = ", aa**2)

take the sine of every element of an array
cc = np.array([0., np.pi/6, np.pi/4, np.pi/2])
print("\ncc (radians) = ", cc)
print("np.sin(cc) = ", np.sin(cc))

convert radians to degrees

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

18

print("\nnp.degrees(cc) = ", np.degrees(cc))

sum the elements in an array
print("\nnp.sum(aa) = ", np.sum(aa))

A very common mistake—I trip over this all the time—is to create a list instead of an

array, then try to use it in a mathematical expression. I would suggest that you ALWAYS use
numpy to make arrays: do this

cc = np.array([0., 3.2, 9., np.pi/6])

instead of this:

cc = [0., 3.2, 9., np.pi/6].

Note the placement of brackets and parentheses. What’s happening here is that the np.array takes
a Python list as input and produces a numpy array as output.

Loops
Most of your programs will include one or more loops. A loop is just what you’d expect

it to be: a procedure that you execute many times, updating some of the variables each time you
execute the loop.

When you write code you will want to be very clear about exactly what each line of your
program is meant to accomplish. Unless you are already an experienced coder, you should
consider drawing a diagram that illustrates what you think your software is going to do before
you type a single line of code. Once you are clear about this you can begin writing code. I’ll
include flowcharts for some of the in-class exercises during the first several units to help you get
the hang of this.

Here is a flow diagram for a typical loop. Note the names I’ve given to some variables:
“accumulator,” “lower_limit,” “upper_limit,” “increment,” and “index.”

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

19

A loop to calculate the sum of a few squares
Download the file unit01_loop_structure.py.txt from the course web site’s code

repository, then strip off the .txt filename extension.
Here’s the text of it; pay careful attention to the variable names in the loop. A common

mistake new programmers make is to confuse the increment and accumulator variables.

"""
This file is unit01_loop_structure.py. It contains a sample loop that
calculates the sum of the squares of the numbers 1 through 10.

George Gollin, University of Illinois, January 15, 2017
"""

initialize variables here. take note of the names.

the "accumulator variable" is where we sum the effects of whatever we
calculated during successive passes through the loop. we initialize it to
zero. I am using the decimal point to make it a floating point variable,
which isn't really necessary.

accumulator = 0.0

the "increment variable" is something we'll generally need to calculate each
pass through the loop. after calculating it we will add it to the accumulator
variable. Since it will vary each time we go through the loop we don't need
to initialize it here.

specify the lower and upper limits for the loop now. Use the range function,
which takes two integers as arguments, and creates a sequence of unity-spaced
numbers. Note that the upper limit is not included in the sequence:
range(1,5) gives the numbers 1, 2, 3, 4. Note that I will add 1 to the upper
limit in my range function since range will stop short of this by 1.

lower_limit = 1
upper_limit = 10

here's the loop. note the "whitespace" that is required, as well as the end-

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

20

of line colon.

for index in range(lower_limit, upper_limit + 1):

 # in python we square things using a double asterisk followed by the
 # desired power. Note that a carat will not work: 3^2 is NOT 9.
 increment = index ** 2

 # now add into the accumulator.
 accumulator = accumulator + increment

 # I could have written all of this much more compactly using the +=
 # operator, but that'd be confusing, and you might find that it makes for
 # buggy, unclear code.

we end the loop by having a line of unindented code.

print("all done! sum of squares is ", accumulator)

"""
Note that I could have written the code more compactly in a single line, but it
would have been harder to decipher:

 >> print(sum(np.array(range(1,11))**2))
 385
"""

Other loop matters

There is at least one other way to execute loops in Python, using “while” statements. For
example, in the above code replace

for index in range(lower_limit, upper_limit + 1):
 increment = index ** 2
 accumulator = accumulator + increment

with

index = lower_limit
while index <= upper_limit:
 increment = index ** 2
 accumulator = accumulator + increment
 index = index + 1

It is possible to exit early from a loop by using the “break” command. Inserting the

(properly indented) line

 if index > 5: break

into the loop will prematurely terminate it.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

21

Functions and modules
As your programs get longer and more complicated, it might become convenient to break

them up into multiple files, each containing one or more functions which are referenced by the
main program, and/or by each other.

Here is an example, in which I have placed the functions SampleFunction1 and
SampleFunction2 inside the file SampleFunctions.py.

This file is SampleFunctions.py. It contains a few sample functions
written in Python, included for pedagogical purposes.

George Gollin, University of Illinois, April 29, 2016

def SampleFunction1(x, y, z):

 """
 This function returns (x * y) + z.

 Created on Thu Apr 28 16:34:11 2016

 Note that the multi-line string literal (all the stuff between the triple quotes)
 serves as a "docstring": it is printed in response to a help query about this
 function.

 Use SampleFunction1 this way:

 import SampleFunctions # load the module
 help(SampleFunctions.SampleFunction1) # ask for help
 TheAnswer = SampleFunctions.SampleFunction1(3,4,5) # call the function

 author: g-gollin
 """

 WorkingVariable = x * y
 WorkingVariable = WorkingVariable + z
 return WorkingVariable

 # end of SampleFunction1

Now define a second function

def SampleFunction2(x, y):

 """

 This function returns sqrt(x^2 + y^2). Use this way after importing the
 module:
 print(SampleFunctions.SampleFunction2(3,4))

 """
 # sum the squares of the two arguments
 WorkingVariable = x**2 + y**2

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

22

 # now take the square root.
 WorkingVariable = WorkingVariable ** 0.5

 # all done.
 return WorkingVariable

 # end of SampleFunction2

For the sake of clarity I have made no attempt to write efficient code! For example, I
could have shortened the executable parts of SampleFunction1 into a single line:

 return x * y + z

Things to note:
• Each function begins with a few lines of text set off by triple quotes. Python treats

these as a “docstring” and will spit them out in response to a help query about the
function.

• There are a lot of explanatory comments. You should not be parsimonious in your
inclusion of comments in your own programs!

• You refer to the functions inside a “module” using notation that is very common
in object oriented languages: <module name>.<function name>. The module
name is just the name of the file, with the “.py” filename extension omitted. For
example,

Hypotenuse = SampleFunctions.SampleFunction2(5,12)

In-class machine exercise 1: an infinite series for p

Recall that we can generally find infinite series representations of transcendental
functions like sin(x). In particular,

Since tan-1(1) = p/4, we can write the following (slowly converging) infinite series�

.

If we group adjacent terms in the series we can rewrite this as

tan−1 x() =

−1()n

2n+1
x2n+1

n=0

∞

∑ −1< x ≤1.

π
4
=

−1()n

2n+1n=0

∞

∑ =1− 1
3
+

1
5
−

1
7
+!

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

23

The value of p���

3.14159265358979323846264338327950288419716939937510582…, though the precision with
which your computer can calculate it is probably limited to fewer digits than this.

Please write a Python script that calculates an approximation to p using the arctan series,
and compare its accuracy after the n = 10 term, 100 term, 10,000 term, and 1,000,000 term. (Use
a conditional statement to print something after the appropriate terms.)

You should approach this by initializing a few things, then executing a loop that
calculates the nth term, with n running from 0 to 999,999, summing the terms as you go. Here’s a
flowchart for one way to structure your program…

…and here’s a template into which you can drop your code: you might find it useful.

π
4
=

−1()n

2n+1n=0

∞

∑ = 1− 1
3

⎛

⎝
⎜

⎞

⎠
⎟+

1
5
−

1
7

⎛

⎝
⎜

⎞

⎠
⎟+

1
9
−

1
11

⎛

⎝
⎜

⎞

⎠
⎟+!

=
3−1
3⋅1

+
7−5
7 ⋅5

+
11−9
11⋅9

+!

=
2
3
+

2
35
+

2
99
+!

= 2 ⋅ 1
4n+3() 4n+1()

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=0

∞

∑ .

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

24

"""
Goal/purpose: You will code an arctan(1) series.
The code here actually calculates the sum of the square roots of the integers
0, 1, 2, 3, 4.

Author(s): George G

Collaborators: Yuk Tung and George

File: who_knows.py

Date: August 2, 2024

Reference(s):
Stack overflow web site (see
http://stackoverflow.com/documentation/python/193/getting-started-with-python-
language#t=201701181706539874984)
Physics 524 course notes
"""

###################################
Import libraries
###################################

import numpy as np

###################################
Define and initialize variables
###################################

Accumulator variable
accumulator = 0

Index and upper limit variables for the loop
lower_limit = 0
upper_limit = 4

Loop to sum the square roots of a bunch of integers

for index in range(lower_limit, upper_limit + 1):

 # calculate increment, then add it to accumulator.
 increment = np.sqrt(index)
 accumulator = accumulator + increment

 # I could have just added np.sqrt(index) to accumulator, without defining
 # increment.

End of loop. Print the results.

print("all done. Sum of square roots is ", accumulator)

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

25

This week’s homework assignment (due at the first class meeting next week)

1. A much better infinite series for p
Please reread all the in-class material, taking note of things that are unclear so that you

can ask about them during office hours.
In class we worked on an arctan series to evaluate p. A much more rapidly converging

series was discovered by the brilliant Indian mathematician Srinivasa Ramanujan3. It is

where k! (“k factorial”) is 1 × 2 × 3 × ⋯	× k and (4k)! is 1 × 2 × 3 × ⋯	× 4k.

Please write a Python script that calculates an approximation to p using the Ramanujan
series, and comment on its accuracy after 1, 2, and 3 terms. (Recall that the value of p is
3.14159265358979323846264338327950288419716939937510582…)

Note that there are even faster-converging formulas than this! One, mentioned in
Wolfram MathWorld, 4 adds 50 digits of precision for each additional term.

For full credit, print out your three approximations and how each compares to p.

2. Relativistic spaceflight
As undergraduates you probably learned about some of the surprising consequences of

special relativity: a moving clock ticks slowly, a moving object becomes shorter along its
direction of motion, the velocity addition formula never yields a superluminal5 speed.

Imagine that we have two frames of reference, which I’ll call O and O’. (“O” stands for
“origin,” I suppose.) Frame O is at rest with respect to the earth, while O’ is fixed to a starship
coasting at constant speed vstarship along the positive x axis, according to observers on earth.

Though identical clocks on earth and on the starship were manufactured to tick once per
second, earth observers will see the starship’s clocks ticking slowly. When an earth clock
measures a time interval Dt, a starship clock will measure a shorter interval Dt’ with

.

3 https://en.wikipedia.org/wiki/Srinivasa_Ramanujan
4 http://mathworld.wolfram.com/PiFormulas.html
5 cool word, isn’t it?

1
π
=

2 2
9801

4k()! 1103+26390k()
k!()4

3964k
k=0

∞

∑ ,

Δ ʹt = Δt 1−

vstarship
2

c2

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

26

Imagine that the starship launches a shuttle craft in the positive x direction, moving with
speed u with respect to the starship. Naturally, earth observers will see the shuttle moving faster
than u since the starship is already moving in the x direction. We use the relativistic velocity
addition formula to calculate the shuttle’s speed as seen by observers on earth:

It is easy to show that in the limit that vstarship and u approach c, vshuttle also approaches (but does
not exceed) c. Note that the exact value of the speed of light is c = 299,792,458 m/s.

Let’s use the time dilation and velocity addition formulas to analyze the motion of a
starship undergoing the uniform proper acceleration g = 9.81 m/s2. By “proper acceleration” I
mean the acceleration sensed by someone on the starship. Naturally, an observer on earth will
see that the starship never exceeds the speed of light, so its acceleration (according to earth
observes) will approach zero.

We could work up an analytic description of xstarship(t) and vstarship(t) by doing some
integrals. But why not just break the flight time up into small time intervals and sum the changes
in position and velocity in a loop? That’s the kind of thing computers are good at.

We’d like to answer the following questions, assuming the ship starts at rest near the
earth. After a certain amount of time in space, how far has the ship gone, according to earth
observers? How fast is it moving? How much time has passed on the earth and starship clocks?

The key is to keep in mind that during ten second of ship’s time (corresponding to a
longer time interval, according to an earth observer), the ship’s speed has increased by 98.1 m/s
according to a cosmonaut on the starship. As a result, earth observers will see that the ship’s
velocity has increased from vstarship to

During ten seconds of ship’s time, earth observers will see that the ship has moved a

distance that is approximately equal to the product of the ship’s speed at the start of the interval
and the duration of the interval, according to earth clocks:

(I am using the approximation that the time dilation factor is constant during the short time
interval.)

Please do the following. Consider a one-way voyage of four year’s duration as measured
by a clock on the starship. (Take the length of a year to be exactly 365.25 days, where one day is

vshuttle =
u+ vstarship

1+
uvstarship

c2

.

98.1+ vstarship

1+
98.1vstarship

c2

.

Δx ≈ vstarship

10 seconds

1−
vstarship

2

c2

.

Unit 1b

Physics 524, University of Illinois ©George Gollin, 2024

27

24 hours long.) By breaking the outbound voyage into ten second intervals (as measured by the
starship clock), write a program that calculates how far the starship has traveled (according to
earth observers), how fast it is moving (according to earth observers), and how much a clock on
the earth has advanced, at the end of the voyage. You will do this by looping over elapsed time
intervals, each of ten second’s ship time duration.

Your code should update the position of the ship, then the reading on the earth clock, then
the velocity as seen by earth during each pass through the loop. To keep track of what your
program is doing, have it print out regular updates of the ship’s position and velocity (as
measured in the earth frame), as well as the elapsed time in both frames.

Here’s what I mean. If at some particular time the ship is traveling at 0.6 c according to
earth observers, then 10 seconds of ship time will correspond to 12.5 seconds of earth time. In
12.5 seconds of earth time the ship will move approximately 12.5 × 0.6 × 299,792,458 meters.
At the end of the interval the ship’s new velocity will be

Keep in mind that the ship’s calendar includes a leap year, so that there are 1461 days, or
126,230,400 seconds of ship’s time in the four-year voyage.

For your information: my version of the program yields these answers:

final ship time (weeks) 208.71428571428572
final earth time (weeks) 1571.41469651
final ship time (seconds) 126230400.0
final earth time (seconds) 950391608.447
final ship speed (% c) 99.94834273779534
final ship distance (lightyears) 29.1632735122

If your code is correct it will agree with mine to splendidly impressive precision. If your
code isn’t correct, then dig into it with the iPython debugger to look for problems.

For full credit, determine (and print) the final earth time along with final ship speed and
time for a four year journey as shown above.

98.1+0.6c

1+ (98.1)(0.6c)
c2

.

