Physics 524 Week 14 Homework Exercise

Due: Tuesday 12/10/2024 at noon

Due date reminder, etc.

Please email your completed assignment to the course TA by Tuesday December 10th at noon.

Your homework submissions—code, cell phone photos, etc. must include enough identifying information for us to tell who you are!

Problem

Modify vegasComputon v2.py to produce a 10,000 event distribution of

$$f(x,y) = A_1 e^{-\frac{1}{2} \left(\frac{(x-\mu_{1x})^2}{\sigma_{1x}^2} + \frac{(y-\mu_{1y})^2}{\sigma_{1y}^2} \right)} + A_2 e^{-\frac{1}{2} \left(\frac{(x-\mu_{2x})^2}{\sigma_{2x}^2} + \frac{(y-\mu_{2y})^2}{\sigma_{2y}^2} \right)}$$

over the range 0 < x,y < 5. Produce the distribution using the same two methods we used in vegasComputon v2.py

(1)
$$\rho(x,y) = 1$$
 $f(x,y) = A_1 e^{-\frac{1}{2}(...)} + A_2 e^{-\frac{1}{2}(...)}$ (i.e., brute force rejection method)

(2)
$$\rho(x,y) = \text{final Vegas step-function grid after integration}$$
 $f(x,y) = \left[A_1 e^{\frac{1}{2}...} + A_2 e^{\frac{1}{2}...}\right] \left[\rho(x,y)\right]^{-1}$.

Compare the number of function evaluations required for these two methods.

The following parameters should be used:

$$A_1 = 1.0$$
 $\mu_{1x} = 2.5$ $\sigma_{1x} = 1.0$ $\mu_{1y} = 2.5$ $\sigma_{1y} = 1.0$ $\sigma_{1y} = 1.0$ $\sigma_{2x} = 0.1$ $\sigma_{2y} = 0.1$ $\sigma_{2y} = 0.1$ $\sigma_{2y} = 0.1$

Notes to minimize the number of modifications (it's somewhat ugly but will get the job done):

- Delete the method *dsig_dy(xnumber*, *yy)* and directly code the double Gaussian function in the method *dlum_dy1dy2(xnumber*, *x*, *y)*. The parameter *xnumber* has no meaning in this function, but leave it there.
- In brute_force() function, change the second line to dlum_dyldy2_val_max = dlum_dyldy2 (xnumber, 2.5, 2.5) since the maximum of the double Gaussian is located at (2.5, 2.5).
- For the same reason, change the third line of the <code>vegas()</code> function to <code>vegasRatioMax = vegasRatioFactor*dlum_dy1dy2(xnumber, 2.5, 2.5)*NN*NN*delx[int(NN/2)]*dely[int(NN/2)]</code> It's assumed that the maximum is located near the middle of the grid. That's the reason for <code>int(NN/2)</code>.
- In plot_results(), modify the variables titleRej, titleVrho and titleVegas to generate appropriate plot titles. Also remove xnumber in the three print statements.

• To place the maximum of the function in the middle of the grid, we want to set ym to 5. The easiest way to achieve this is to set xnumber = -1.25 since ym is set to xnumber/(xnumber + 1) in the code. We also want the maximum plot range to be 5 in both the x and y directions, so set xymax to 5 when calling plot_results(). Also set vegasRatioFactor to 3.5. In other words, you can use the following command to generate the plots:

```
plot results(-1.25, 10000, 3.5, 5)
```

• You are welcome to tidy up the code if you want, but I suggest you try to implement the minimum changes to produce a working code first.