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1) Lobachevski space: The hyperbolic plane of Lobachevski geometry can be realized by

embedding the Z ≥ R branch of the two-sheeted hyperboloid Z2 − X2 − Y 2 = R2 into a

Minkowski space with metric ds2 = −dZ2 + dX2 + dY 2.
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We can parametrize this surface by making an “imaginary radius” version of the stereographic

map, in which the point P on the hyperboloid is mapped to the point Q on the X-Y plane.

Show that the resulting metric is that of the Poincaré disc model:

g( , ) =
4R4

(R2 −X2 − Y 2)2
(dX ⊗ dX + dY ⊗ dY ), X2 + Y 2 < R2

2) Flywheel and Rolling Ball: These two problems make use of the area 2-form on the

sphere.

a) A flywheel of moment of inertia I can rotate without friction about an axle whose

direction is specified by a unit vector n. The flywheel and axle are initially stationary.

The direction n of the axle is made to describe a simple closed curve γ = ∂Ω on the

unit sphere, and is then left stationary.
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Show that once the axle has returned to rest in its initial direction, the flywheel has

also returned to rest, but has rotated through an angle Θ = Area(Ω) when compared

with its initial orientation. The area of Ω is to be counted as positive if the path γ

surrounds it in a clockwise sense, and negative otherwise. Observe that the path γ

bounds two regions with opposite orientations. Taking into account that we cannot

define the rotation angle at intermediate steps, show that the area of either region can

be used to compute Θ, the results being physically indistinguishable. (Hint: Use Euler

angles and show that the component LZ = I(ψ̇ + φ̇ cos θ) of the flywheel’s angular

momentum along the axle is a constant of the motion.)

b) A ball of unit radius rolls without slipping on a table. The ball moves in such a way

that the point in contact with table describes a closed path γ = ∂Ω on the ball . (The

corresponding path on the table will not necessarily be closed.) Show that the final

orientation of the ball will be such that it has rotated, when compared with its initial

orientation, through an angle φ = Area(Ω) about a vertical axis through its center, As

in the previous part, the area is counted positive if γ encircles Ω in an anti-clockwise

sense. (Hint: recall the no-slip rolling condition φ̇+ ψ̇ cos θ = 0.)

3) Hopf Invariant: The next pair of exercises explores some physics appearances of the

continuum Hopf linking number.

a) The equations governing the motion of an incompressible inviscid fluid are ∇ · v = 0

and Euler’s equation
Dv

Dt
≡ ∂v

∂t
+ (v · ∇)v = −∇P.

Recall that the operator ∂/∂t + v · ∇, here written as D/Dt, is called the convective

derivative.

i) Take the curl of Euler’s equation to show that if ω = ∇× v is the vorticity then

Dω

Dt
≡ ∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v.

ii) Combine Euler’s equation with part a) to show that

D

Dt
(v · ω) = ∇ ·

{

ω

(

1

2
v2 − P

)}

.

iii) Show that if Ω is a volume co-moving with the fluid and f is a scalar function,

then
d

dt

∫

Ω

f(r, t) dV =

∫

Ω

Df

Dt
dV

iv) Conclude that when ω is zero at infinity the helicity

H =

∫

v · ω dV

is a constant of the motion.
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The helicity measures the Hopf linking number of the vortex lines. The discovery of

its conservation by Keith Moffatt founded the field of topological fluid dynamics .

b) Let B = ∇×A and E = −∂A/∂t−∇φ be the electric and magnetic field in an incom-

pressible and perfectly conducting fluid. In such a fluid the co-moving electromotive

force E+ v ×B must vanish everywhere.

i) Use Maxwell’s equations to show that

∂A

∂t
= v × (∇×A)−∇φ,

∂B

∂t
= ∇× (v ×B).

ii) From part a) show that the convective derivative of A ·B is given by

D

Dt
(A ·B) = ∇ · {B (A · v− φ)} .

iii) By using the same reasoning as the previous problem, conclude that Woltjer’s

invariant

W =

∫

(A ·B) dV =

∫

ǫijkAi∂jAkd
3x =

∫

AF

is a constant of the motion, provided that B is zero at infinity.

This result shows that the Hopf linking number of the magnetic field lines is inde-

pendent of time. It is an essential ingredient in the geodynamo theory of the Earth’s

magnetic field.

4) Faraday’s Law: Faraday’s “flux rule” for computing the electromotive force E in a

circuit containing a thin moving wire is usually derived by the following manipulations:

E ≡
∮

∂Ω

(E+ v ×B) · dr

=

∫

Ω

curlE · dS−
∮

∂Ω

B · (v × dr)

= −
∫

Ω

∂B

∂t
· dS−

∮

∂Ω

B · (v × dr)

= − d

dt

∫

Ω

B · dS.

a) Show that if we parameterize the surface Ω as xµ(u, v, τ), with u, v labelling points on

Ω, and τ parametrizing the evolution of Ω, then the corresponding manipulations in

the covariant differential-form version of Maxwell’s equations lead to

d

dτ

∫

Ω

F =

∫

Ω

LV F =

∫

∂Ω

iV F = −
∫

∂Ω

f,

where V µ = ∂xµ/∂τ and f = −iV F .
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b) Show that if we take τ to be the proper time along the world-line of each element of

Ω, then V is the 4-velocity

V µ =
1√

1− v2
(1,v),

and f = −iV F becomes the one-form corresponding to the Lorentz-force 4-vector.

It is not clear that the terms in this covariant form of Farday’s law can be given any

physical interpretation outside the low-velocity limit. When parts of ∂Ω have different

velocities, the relation of the integrals to measurements made at fixed co-ordinate time

requires thought.1

1See E. Marx, Journal of the Franklin Institute, 300 (1975) 353-364.
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