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1 Lie Bracket Geometry

Recall the definition of the flow associated with a tangent-vector field (equation (11.24) in the

textbook): it is the map that takes a point x0 and maps it to x(t) by solving the family of equations

dxµ

dt
= Xµ(x1, x2, . . . ), (1)

with initial condition xµ(0) = xµ0 . The resulting (differential) equations are found easily enough.

X = y∂x =⇒

ẋ = y

ẏ = 0
=⇒

x(t) = y0t+ x0

y(t) = y0
,

and likewise for Y ,

Y = ∂y =⇒

ẋ = 0

ẏ = 1
=⇒

x(t) = x0

y(t) = t+ y0
.

Hence the flows associated with X and Y are

ΦX(t) = (y0t+ x0, y0) and ΦY (t) = (x0, t+ y0).

The commutator is easily calculated:

[X,Y ] = XY − Y X

= y∂x∂y − ∂y(y∂x)

=���y∂x∂y −���y∂x∂y − ∂x

= −∂x.

The geometric interpretation of the Lie bracket is discussed in section 11.2 of the textbook (see

figure 11.3). Figure 1 shows this geometric interpretation for the case of the vector fields X and Y .

2 Frobenius’ Theorem

Remember that a set of vector fields, {Xi}, are said to be in involution with each other if the Lie

bracket is closed; i.e.,

[Xi, Xj ] = cij
kXk, (2)
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∂x

∂y

(x0, y0) (y0t+ x0, y0)ΦX by t

(y0t+ x0, y0 + s)

ΦY by s

(−st+ x0, y0 + s) ΦX by −t

(−st+ x0, y0)

ΦY by −s

st[X,Y ]

Figure 1: The trajectory of an initial point (x0, y0) as it first flows along X by t, then along Y by s,
and - starting the trip back - along X by −t, and finally along Y by −s. In agreement with the
geometric interpretation discussed in the textbook, the difference between the initial and final points
(dashed line) is just st[X,Y ] = −st∂x.

for some set of functions cij
k. By direct calculation (or in analogy with angular momentum),

[Ly, Lz] = [z∂x − x∂z, x∂y − y∂x]

= [z∂x, x∂y]−�����[z∂x, y∂x]−�����[x∂z, x∂y] + [x∂z, y∂x] (linearity of [·, ·])

= z∂y − y∂z (= −Lx)

=
z

x
(x∂y − y∂x)︸ ︷︷ ︸

=Lz

+
y

x
(z∂x − x∂z)︸ ︷︷ ︸

=Ly

.

This shows czyz = z/x and cyyz = y/x, which satisfies definition (2), and hence Ly and Lz are in

involution. If

Lzf = (x∂y − y∂x)f = 0 and − Lyf = (x∂z − z∂x)f = 0,

then L2f ≡ (L2
x + L2

y + L2
z)f = 0 as well, since Ly and Lz are in involution. In other words, f

is an eigenfunction of the “total angular momentum” operator and therefore must be spherically

symmetric.

3 Rolling Ball

Expressions for (ωx, ωy, ωz) in terms of the Euler angles can be read off directly from the diagram

(given in the problem).
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ωx = −ψ̇ sin θ cosϕ︸ ︷︷ ︸
project ψ̇ to
yz-plane

+ θ̇ sinϕ︸ ︷︷ ︸
project θ̇ to
yz-plane

, (3a)

ωy = ψ̇ sin θ sinϕ︸ ︷︷ ︸
project ψ̇ to
xz-plane

+ θ̇ cosϕ︸ ︷︷ ︸
project θ̇ to
xz-plane

, (3b)

ωz = ψ̇ cos θ︸ ︷︷ ︸
project ψ̇ to
xy-plane

+ ϕ̇︸︷︷︸
already in
xy-plane

(3c)

For example, to find ωz we project all the angular velocities (i.e., θ̇, ψ̇, ϕ̇) to the plane perpendicular

to the z-axis. This procedure yields equations (3a) through (3c).

(a) The rolling conditions for a ball on a table mentioned in class are

ẋ = ψ̇ sin θ sinϕ+ θ̇ cosϕ,

ẏ = −ψ̇ sin θ cosϕ+ θ̇ sinϕ,

0 = ψ̇ cos θ + ϕ̇.

Comparison with equations (3a), (3b), and (3c) shows that these are identically the no-slip

rolling conditions:

ẋ = ωy,

ẏ = −ωx,

0 = ωz.

(b) This problem can, essentially, be thought of as the reverse of problem one where we were given

a vector field and asked to find its associated flow. Here, we are gifted a system of differential

equations that specify a flow and asked to solve for the associated vector field. In the case

of rollx, it is a flow of unit velocity along the x-direction specified by ẋ = 1, ẏ = 0, and the

three no-slip conditions, which give a system of five equations in five unknowns (the dotted

variables). The case of rolly is analogous.

To find the vector field rollx associated to the flow of unit speed along the x direction, we set
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ẋ = 1, ẏ = 0, and then solve the resulting system of equations,

1 = ψ̇ sin θ sinϕ+ θ̇ cosϕ (4a)

0 = −ψ̇ sin θ cosϕ+ θ̇ sinϕ (4b)

0 = ψ̇ cos θ + ϕ̇, (4c)

in terms of the local coordinates (here, only ϕ, θ, and ψ). A little bit of arithmetic yields

(4b) tanϕ+ (4a) =⇒ θ̇ = cosϕ (5a)

(4b)(− cotϕ) + (4a) =⇒ ψ̇ = sinϕ csc θ. (5b)

Lastly, substituting equation (5c) into equation (4c) gives

ϕ̇ = −ϕ̇ cos θ = −
(
ẋ sinϕ

sin θ

)
cos θ =⇒ ϕ̇ = − sinϕ cot θ. (5c)

Using (5a) through (5c), one can write the vector field in terms of the local coordinates,

rollx =
(
ẋ(t), ẏ(t), ϕ̇(t), θ̇(t), ψ̇(t)

)
= ∂x − (sinϕ cot θ)∂ϕ + (cosϕ)∂θ + (sinϕ csc θ)∂ψ. (6)

In the second equality, I’ve have written the vector field in terms of the (tangent space) basis

elements {∂x, ∂y, ∂ϕ, ∂θ, ∂ψ}.

We use the analogous procedure to find Y , which instead satisfies the conditions ẋ = 0 and

ẏ = 1. This gives the following system of equations:

0 = ψ̇ sin θ sinϕ+ θ̇ cosϕ (7a)

1 = −ψ̇ sin θ cosϕ+ θ̇ sinϕ (7b)

0 = ψ̇ cos θ + ϕ̇. (7c)

These again are solved easily.

(7a) cotϕ+ (7b) =⇒ θ̇ = sinϕ (8a)

(7a)(− tanϕ) + (7b) =⇒ ψ̇ = − csc θ cosϕ. (8b)

Finally, substituting (8b) into (7c), we find

ϕ̇ = −ψ̇ cos θ = cosϕ cot θ =⇒ ϕ̇ = cosϕ cot θ. (8c)

Using equations (8a) through (8c), one finds

rolly = ∂y + (cosϕ cot θ)∂ϕ + (sinϕ)∂θ − (csc θ cosϕ)∂ψ. (9)
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(c) Having found both vector fields rollx and rolly, we can compute the commutator by direct

calculation.

[rollx, rolly] = (rollx)(rolly)− (rolly)(rollx)

= (∂x − (sinϕ cot θ)∂ϕ + (cosϕ)∂θ + (sinϕ csc θ)∂ψ)

(∂y + (cosϕ cot θ)∂ϕ + (sinϕ)∂θ − (csc θ cosϕ)∂ψ)

− (∂y + (cosϕ cot θ)∂ϕ + (sinϕ)∂θ − (csc θ cosϕ)∂ψ)

(∂x − (sinϕ cot θ)∂ϕ + (cosϕ)∂θ + (sinϕ csc θ)∂ψ)

(plug in (6) and (9))

=
(
(sin2 ϕ cot2 θ)∂ϕ − (sinϕ cosϕ cot θ)∂θ − (csc θ cot θ sin2 ϕ)∂ψ

− (cos2 ϕ csc2 θ)∂ϕ + (cotϕ cscϕ cos2 ϕ)∂ψ
)

−
(
−(cos2 ϕ cot2 θ)∂ϕ − (sinϕ cosϕ cot θ)∂θ + (cos2 ϕ csc θ cot θ)∂ψ

+ (sin2 ϕ csc2 θ)∂ϕ − (sin2 ϕ cot θ csc θ)∂ψ
)

= (cot2 θ − csc2 θ)︸ ︷︷ ︸
=−1

∂ϕ.

Since spinz = ∂ϕ, we arrive at the desired result,

[rollx, rolly] = − spinz . (10)

(d) The commutators can be computed directly:

[spinz, rollx] = (spinz)(rollx)− (rollx)(spinz)

= −(cosϕ cot θ)∂ϕ − (sinϕ)∂θ + (csc θ cosϕ)∂ψ = −(rolly −∂y) ≡ spinx

and

[spinz, rolly] = (spinz)(rolly)− (rolly)(spinz)

= −(sinϕ cot θ)∂ϕ + (cos θ)∂θ + (csc θ sinϕ)∂ψ = (rollx−∂x) ≡ spiny .

Note that we have generated five linearly independent vector fields by taking commutators of

rollx and rolly. This shows in fact that any point on the manifold can be reached only by

rolling in the x or y direction.

4 Killing Vector

Using equation (11.38) from the textbook for the Lie derivative of a type (0, 2) tensor,

(LX g)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α, (11)
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we can check by direct computation that LVx g = 0, where

g( , ) = dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ

and

Vx = − sin(ϕ)∂θ − cot(θ) cos(ϕ)∂ϕ.

We first calculate all the necessary derivatives.

∂θgϕϕ = 2 sin(θ) cos(θ) ∂θV
ϕ
x = csc2(θ) cos(ϕ)

∂ϕV
θ
x = − cos(ϕ) ∂ϕV

ϕ
x = cot(θ) sin(ϕ)

All other derivatives vanish. Next, just show that all the components vanish identically:

(LVx g)ϕϕ = V ϕ
x ∂ϕgϕϕ + V θ

x ∂θgϕϕ + gϕϕ∂ϕV
ϕ
x

+ gϕθ∂ϕV
θ
x + gϕϕ∂ϕV

ϕ
x + gθϕ∂ϕV

θ
x

= (− sin(ϕ))(2 sin(θ) cos(θ)) + (sin2(θ))(cot(θ) sin(ϕ))

+ (sin2(θ))(cot(θ) sin(ϕ))

= 0,

(LVx g)θθ = V ϕ
x ∂ϕgθθ + V θ

x ∂θgθθ + gθϕ∂θV
ϕ
x

+ gθθ∂θV
θ
x + gϕθ∂θV

ϕ
x + gθθ∂θV

θ
x

= 0, (all terms multiplied by zero)

(LVx g)ϕθ = V ϕ
x ∂ϕgϕθ + V θ

x ∂θgϕθ + gϕϕ∂θV
ϕ
x

+ gϕθ∂θV
θ
x + gϕθ∂ϕV

ϕ
x + gθθ∂ϕV

θ
x

= (sin2(θ))(csc2(θ) cos(ϕ))− cos(ϕ)

= 0,

(LVx g)θϕ = V ϕ
x ∂ϕgϕϕ + V θ

x ∂θgϕϕ + gϕϕ∂ϕV
ϕ
x

+ gϕθ∂ϕV
θ
x + gϕϕ∂ϕV

ϕ
x + gθϕ∂ϕV

θ
x

= − cos(ϕ) + (sin2(θ))(csc2(θ) cos(ϕ))

= 0.

Hence, LVx g = 0 as expected.
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