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1 Counting Indices

(i) The dimension of the space of skew-symmetric covariant tensors with p indices is equal to the

number of different ways we can choose p elements from the d elements spanning the space;

i.e.,
(

d

p

)

=
d!

p!(d− p)!
.

(ii) In the symmetric case, we again have d choose p basis elements, but with replacements. This

is usually denoted by ((

d

p

))

=

(

d+ p− 1

p

)

=
(d+ p− 1)!

p!(d− 1)!
.

Without knowing the formula for subset selection with repetitions, one could derive this

result as follows. Since we are in the symmetric case, repeated indices are allowed, but

any permutation of the same indices results in the same basis element. We can however

sort indices in non-decreasing order to determine the total number of basis elements. This

procedure shows that the dimension of the space of symmetric covariant tensors with p indices

is just the number non-decreasing sequences of length p using d integers. The number of non-

decreasing sequences (allowing repetitions) of length p among d integers can be found by a

standard “bars and stars” argument: among p+ d slots, place p bars. The number of stars to

the left of each bar gives the corresponding index. Since indices range from 1 to d, the first

slot must be occupied by a star. Of the remaining d + p − 1 slots, we are left to choose p of

them for the bars. Hence the dimension of the space is given by

(

d+ p− 1

p

)

=
(d+ p− 1)!

p!(d− 1)!
.

2 Quantum Entanglement

(i) Suppose a is a nonzero decomposable tensor. Then for some p and q, we have apq = xpxq 6= 0,

with the remaining coefficients satisfying

aij = xiyj =
xiyjxpyq

xpyq
=

apjaiq

apq
. (1)
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However, not all of these are constraints since

aiq =
✟✟apqaiq

✟✟apq
= aiq and apj =

✚
✚apjapq

✟✟apq
= apj;

i.e., i = p or j = q do not result in constraints. The total number of constraints is then

(n− 1)(m− 1).

A more physical argument is to note that a = aije
(1)
i ⊗e

(2)
j ∈ H(1)⊗H(2) has mn components

whereas a = x ⊗ y = xiyje
(1)
i ⊗ e

(2)
j has m + n components. Therefore, the number of

constraints a decomposable state must satisfy is mn− (m+ n) + 1, where one constraint has

been added for the normalization of states.

(ii) Rewriting equation (1) yields

aijapq = apjaiq =⇒ det

(

aij aiq

apj apq

)

= aijapq − apjaiq = 0,

where the last equality follows since our state is decomposable and satisfies (1). Note that

this yields a total of m2n2 equations since i and p range from 1, 2 . . . ,m and j and q from

1, 2, . . . , n.

(iii) If a is the zero tensor, then it is trivially decomposable. For any nonzero tensor, it suffices

to pick a single nonzero apq and choose only the constraints with i = 1, 2, . . . ,m (i 6= p) and

j = 1, 2, . . . , n (j 6= q). This yields the same (m − 1)(n − 1) constraints as those in equation

(1).

It remains to show that

aij =
apjaiq

apq
⇐⇒ aij = xiyj,

for all i and j. The necessary condition ( ⇐= ) was shown in part (i). The sufficient condition

( =⇒ ) can be shown by first choosing xp and yq such that xpyq = apq. The remaining

conditions, aij = xiyj, are then satisfied by defining

xi =
aiq

apq
xp and yj =

apj

apq
yq,

so that

aij =
apjaiq

apq
=

(
yjapq

yq

)(
xiapq

xp

)

apq
=

xiyjapq

xpyq
︸︷︷︸
=apq

= xiyj.
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3 Symmetric Integration

We first show that

Iαβγδ =

∫

Rn

dnk

(2π)n
(kαkβkγkδ)f(k

2) (2)

is invariant under (proper) orthogonal transformations. For a general O ∈ SO(n),

Oα′αOβ′βOγ′γOδ′δIαβγδ

=

∫

Rn

dnk

(2π)n
(Oα′αkα)(Oβ′βkβ)(Oγ′γkγ)(Oδ′δkδ)f(k

2)

=

∫

O−1(Rn)

∣
∣detO−1

∣
∣

dnq

(2π)n
qα′qβ′qγ′qδ′f(q

2) (q ≡ Ok)

=

∫

Rn

dnq

(2π)n
qα′qβ′qγ′qδ′f(q

2) (detO−1 = 1),

which is numerically equal to Iαβγδ up to relabelling. Note, we have used the fact that k2 is left

invariant under an orthogonal transformation since

q2 = qtq = (Ok)t(Ok) = ktOtO
︸︷︷︸

=id

k = k2.

Because of invariance (see (10.87) in the textbook), we can write

Iαβγδ = aδαβδγδ + bδαγδδβ + cδαδδβγ + dǫαβγδ

for some coefficients a, b, c, and d. Since Iαβγδ is completely symmetric in all its indices, a = b = c.

Additionally, since ǫαβγδ is completely asymmetric, d = 0. We can then write

Iαβγδ = A(δαβδγδ + δαγδδβ + δαδδβγ).

A can be determined by (note the implicit summations over repeated indices)

Iααγγ = Iαβγδδαβδγδ

= A(δαβδγδ + δαγδδβ + δαδδβγ)δαβδγδ

= A(δαβδγδδαβδγδ
︸ ︷︷ ︸

=n2

+ δαγδδβδαβδγδ
︸ ︷︷ ︸

=n

+ δαδδβγδαβδγδ
︸ ︷︷ ︸

=n

)

= A(n2 + 2n).

Therefore,

A =
1

n(n+ 2)

∫
dnk

(2π)2
(k2)2f(k2).
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For the analogous rank-five tensor,

Iαβγδǫ =

∫
dnk

(2π)2
(kαkβkγkδkǫ
︸ ︷︷ ︸

odd

) f(k2)
︸ ︷︷ ︸
even

= 0.

The integral clearly vanishes since we are integrating an odd function over symmetric bounds.

4 Leonardo da Vinci’s Problem II

First, note that along the centroid (x = y = 0) ηy < 0 for z > 0, so the deformation is indeed

downward. To show that the R in the problem does in fact coincide with the radius of curvature

(of the line of centroids), note that in the vicinity of any point on the line of centroids, we can write

yc(z) = − z2

2R . Evaluating the derivatives at z = 0, one finds (using the definition of the radius of

curvature)

Radius of curvature ≡

∣
∣
∣
∣
∣

(1 + y′c)
3/2

y′′c

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

1

−1/R

∣
∣
∣
∣
= R.

The strain tensor eij is defined as

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)

. (3)

Using the deformations given in the problem,

exx = −
σ

R
y eyy = −

σ

R
y ezz =

y

R

exy = 0 exz = 0 eyz = 0.

The remaining elements are determined by symmetry (eij = eji). From equation (10.103) in the

text, we find the stress tensor elements are

σzz = Y
(ηz
z

)

=
Y

R
y,

while σxx = σyy = 0 since there are no forces acting on the sides of the beam. These statements

can be explicitly verified from the general definition of the stress tensor,

σij = λδijekk + 2µeij , (4)

where λ and µ are the Lamé constants. Plugging in the strain tensor elements to (4) and using the

relationship λ(1− 2σ) + 2µ = 2µ(1 + σ) (see equations (10.108) and (10.112) in the textbook), one

immediately calculates the stress tensor elements.
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Finally, we calculate the total elastic energy.

E =
1

2

∫∫∫

beam
eij cijklekl
︸ ︷︷ ︸
=σij

d3x =
1

2

∫

Γ

∫

L
ezzσzz dsdxdy

=

(∫

Γ
y2 dxdy

)

︸ ︷︷ ︸

=I

(
∫

L

Y

2

(
1

R

)2

ds

)

≈

∫
Y I

2
(y′′)2 dz,

where in the third equality I’ve plugged in our earlier result σzz =
Y
Ry.

5 Maxwell Stress

The Maxwell stress tensor is given by

Πij = ǫ0

(

EiEj −
1

2
δij |E|2

)

+ µ0

(

HiHj −
1

2
δij |H|2

)

. (5)

Maxwell’s equations in component form (and written in terms of H = 1
µ0
B) become

∇ · E =
ρ

ǫ0
⇐⇒ ∂iEi =

ρ

ǫ0
(Gauss’s Law) (6a)

∇ ·H = 0 ⇐⇒ ∂iHi = 0 (6b)

∇×E = −µ0
∂H

∂t
⇐⇒ ǫijk∂iEj = −µ0∂tHk (Faraday’s Law) (6c)

∇×H = j+ ǫ0
∂E

∂t
⇐⇒ ǫijk∂jHk = jk + ǫ0∂tEk (Ampère’s Law). (6d)

To show the identity

∂jΠij = (ρE+ j×B)i
︸ ︷︷ ︸

≡(I)

+
∂

∂t

{
1

c2
(E×H)i

}

︸ ︷︷ ︸

≡(II)

, (7)

it is easiest to expand the RHS. Using index notation,

(I) = ρEi + ǫijkjjBk,
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and (using the shorthand ∂t =
∂
∂t)

(II) =
1

c2
ǫijk (Ej∂tHk +Hk∂tEj)

=
1

c2
ǫijk

[

Ej

(

−
1

µ0
ǫki′j′∂i′Ej′

)

+
1

ǫ0
Hk

(
−jj + ǫji′k′∂i′Hk′

)
]

((6c) and (6d))

= −ǫijkjjBk − ǫ0 ǫijkǫi′j′k
︸ ︷︷ ︸

=(δii′ δjj′−δij′δji′ )

Ej∂i′Ej′ − µ0 ǫijkǫi′jk′
︸ ︷︷ ︸

=(δii′δkk′−δik′δki′)

Hk∂i′Hk′ (homework 0, 2(c))

= −ǫijkjjBk − ǫ0(Ej∂iEj − Ej∂jEi)− µ0(Hk∂iHk −Hk∂kHi).

Combining (I) + (II) and relabelling indices,

∂jΠij = ρEi − ǫ0(Ej∂iEj −Ej∂jEi)− µ0(Hk∂iHk −Hk∂kHi)

= ǫ0(∂jEj)Ei + µ0(∂jHj)Hi − ǫ0(Ek∂iEk − Ej∂jEi)

− µ0(Hk∂iHk −Hj∂jHi)

((6a) and (6b))

= ǫ0
[
(∂jEj)Ei + Ej∂jEi − Ek∂iEk

]
+ µ0

[
(∂jHj)Hi +Hj∂jHi −Hk∂iHk

]

= ∂j

{

ǫ0

(

EiEj −
1

2
δij |E|2

)

+ µ0

(

HiHj −
1

2
δij |H|2

)}

,

as desired.

6


	Counting Indices
	Quantum Entanglement
	Symmetric Integration
	Leonardo da Vinci's Problem II
	Maxwell Stress

