Physics 508 Handout 8 Fall 2023

## Mathematical Methods in Physics I

Prof. M. Stone 2117 ESB

Homework 8

University of Illinois

1) Critical Mass: An infinite slab of fissile material has thickness L. The neutron density  $n(\mathbf{r})$  in the material obeys the equation

$$\frac{\partial n}{\partial t} = D\nabla^2 n + \lambda n + \mu,$$

where n is zero at the surface of the slab at x=0,L. Here D is the neutron diffusion constant, the term  $\lambda n$  describes the creation of new neutrons by induced fission, and  $\mu$  is the rate of production per unit volume of neutrons by spontaneous fission. Assume that n depends only on x and t, and that  $\lambda$  and  $\mu$  are constants,

a) Expand both n and  $\mu$  as series

$$n(x,t) = \sum_{m} a_m(t)\varphi_m(x), \quad \mu = \sum_{m} b_m \varphi_m(x)$$

where the  $\varphi_m$  are a complete orthonormal set of functions you think suitable for solving the problem.

- b) Find an explicit expression for the coefficients  $a_m(t)$  in terms of their intial values  $a_m(0)$ .
- c) Determine the critical thickness,  $L_{\text{crit}}$ , above which the slab will explode.
- d) Assuming that  $L < L_{\text{crit}}$ , find the equilibrium distribution  $n_{\text{eq}}(x)$  of neutrons in the slab. (You may either sum your series expansion to get an explicit closed-form answer, or use another (Green function?) method.)
- 2) Semi-infinite Rod: Consider the heat equation

$$\frac{\partial \theta}{\partial t} = D\nabla^2 \theta, \quad 0 < x < \infty$$

with the temperature  $\theta(x,t)$  obeying the initial condition  $\theta(x,0) = \theta_0$  for  $0 < x < \infty$ , and the boundary condition  $\theta(0,t) = 0$ .

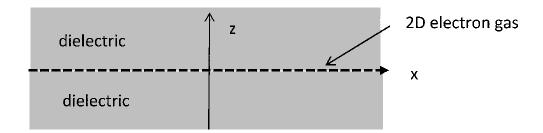
a) Show that the boundary condition at x = 0 can be satisfied at all times by introducing a suitable mirror image of the initial data in the region  $-\infty < x < 0$ , and then applying the heat kernel for the entire real line to this extended initial data. Show that the solution of the semi-infinite rod problem can be expressed in terms of the error function

erf 
$$x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\xi^2} d\xi$$
.

b) Solve the same problem by using a Fourier integral expansion in terms of  $\sin kx$  on the half-line  $0 < x < \infty$  and obtaining the time evolution of the Fourier coefficients. Invert

the transform and show that your answer reduces to that of part a). (Hint: replace the initial condition by  $\theta(x,0) = \theta_0 e^{-\epsilon x}$ , so that the Fourier transform converges, and then take the limit  $\epsilon \to 0$  at the end of your calculation.)

## 3) 2-D Electron Gas — an old Qual problem:



A two-dimensional gas of electrons is confined at the z=0 interface between two semiinfinite dielectric slabs. Each slab has dielectric constant  $\varepsilon$ . A perturbation of the electron charge-density propagates as a wave through the electron gas. The surface-charge density on the interface is therefore given by  $\sigma(x,t) = \sigma_0 + \sigma_1(x,t)$ , where  $\sigma_0$  is constant and the small-amplitude perturbation  $\sigma_1$  takes the form

$$\sigma_1(x,t) = a \exp\{i(kx - \omega t)\}.$$

Assume that electrons act as classical particles of mass m with local velocity,

$$v(x,t) = v_0 \exp\{i(kx - \omega t)\},\,$$

and that the only significant force is due to the electric field produced by the charge density perturbation.

a) Use Laplace's equation

$$-\nabla^2 \phi = \varepsilon^{-1} \delta(z) \sigma(x, t)$$

to find the electrical potential  $\phi(x,z,t)$  due to the charge.

- b) From  $\phi(x, z, t)$  find the electric field component  $E_x(x, z = 0, t)$  parallel to and within the electron gas, and hence the acceleration  $\partial v(x, t)/\partial t$  of the electrons.
- c) Linearize the charge continuity equation

$$\frac{\partial \sigma}{\partial t} + \frac{\partial \sigma v}{\partial x} = 0,$$

and use it to relate a and  $v_0$ . Hence show that the dispersion equation relating the frequency  $\omega$  to the wavenumber k is

$$\omega^2 = \gamma |k|.$$

Express the coefficient  $\gamma$  in terms of m,  $\varepsilon$ ,  $\sigma_0$  and the electron charge q = -e.

4) Seasonal Heat Waves: Suppose that the measured temperature of the air above the arctic permafrost is expressed as a Fourier series

$$\theta(t) = \theta_0 + \sum_{n=1}^{\infty} \theta_n \cos n\omega t,$$

where  $T = 2\pi/\omega$  is one year. Solve the heat equation for the soil temperature

$$\frac{\partial \theta}{\partial t} = \kappa \frac{\partial^2 \theta}{\partial z^2}, \quad 0 < z < \infty$$

with this boundary condition, and find the temperature  $\theta(z,t)$  at a depth z below the surface as a function of time. Observe that the sub-surface temperature fluctuates with the same period as that of the air, but with a phase lag that depends on the depth. Also observe that the longest period temperature fluctuations penetrate the deepest into the ground. (Hint: for each Fourier component, write  $\theta$  as  $\text{Re}[A_n(z) \exp in\omega t]$  where  $A_n$  is a complex function of z.)