
Physics 487   Midterm Exam #2   Spring 2021
Thursday April 29, 11:00 am – 12:20 pm 

This is a closed book exam.  No use of calculators or any other electronic devices is allowed except to view this 
file.  

You have 75 minutes to work the problems and 
5 minutes to photograph your answers and upload using the my.physics course upload tool.

At the beginning of the exam: 
1) Write your name and netid on your answer booklet(s).
2) Turn your cell phone off.
3) Put away all calculators, phones, computers, notes, and books. 

During the exam:
1) Show your work and/or reasoning.  Answers with no work or explanation get no points.  But ...

2) Don’t write long essays explaining your reasoning.  We only need to see enough work to confirm that you 
understand what you’re doing and are not just guessing.  (If you are guessing, explain that, then verify 
your guess explicitly.)  A good annotated sketch is often the best explanation of all!

3) All question parts on this exam are independent: you can get full points on any part even if your answers 
to all the other parts are incorrect. You should attempt all the question parts!  If you get stuck, move on to 
the next one and come back later.  The worst thing you can do is stall on one question and not get to others 
whose solution may be very simple.  

4) Partial credit will be given for incorrect answers if the work is understandable and some of it is correct.  
IMPORTANT: If you think you’ve made a mistake but can’t find it, explain what you think is wrong 
➔ you may well get partial credit for noticing your error! 

5) It is fine to leave answers as radicals or irreducible fractions (e.g. 10 3  or 5/7), but you will lose points 

 for not simplifying answers to an irreducible form (e.g. 24(x2 − y2 ) / ( 9x − 9y)  is unacceptable.) 

Academic Integrity:

The giving of assistance to or receiving of assistance from another person, or the use of unauthorized materials 
during University Examinations can be grounds for disciplinary action, up to and including expulsion from the 
University. 

Phys 487 Midterm #2 Spring 2021  



Please remember: “no work, no points”.  Everything that isn’t on the formula sheets 486-Final 
or 487-Midterm2 needs to be derived and/or explained.  

You have 75 minutes to work + 5 to upload 
→ upload by 12:20 pm 

Problem 1 

A particle is located in this potential: 

	 	 V (x) = A sin(x)
x

⎛
⎝⎜

⎞
⎠⎟
2

(a)  Write down a trial wavefunction that could be used with the variational principle (v.p.) to estimate the 
       ground state of this system.

(b)  Write down a trial wavefunction that could be used with the v.p. to estimate the first excited state.

(c)  Write down a potential V(x) that would make it impossible to estimate the first excited state using the v.p. 
	  and explain why you chose what you did. 

Problem 2      

Consider a quantum system with only three linearly-independent states.  The Hamiltonian of the system is
H = H0 + H ′ where H ′ is a perturbation that is very small compared to the unperturbed Hamiltonian H0.  
Using as our basis the energy eigenstates { | n(0) 〉 } = { | 1(0) 〉, | 2(0) 〉, | 3(0)) 〉 } of the unperturbed Hamiltonian,
the matrix representations of H0 and H ′ are :

	 	 H = H0 + H′      where     H0 =
5 0 0
0 8 0
0 0 8

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟      and     ′H = ε

1/ 2 −2 0
−2 1 1
0 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

“Appropriate units” are in use (i.e. ignore units), and the parameter ε multiplying the perturbation H ′ is a  small 
dimensionless number << 1.  

(a)  Calculate the first eigenvalue E1 of H to 0th + 1st + 2nd order in ε.

(b)  Calculate the first eigenstate | 1 〉 of H to 0th + 1st order in ε.

There are more questions on the next page.
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Problem 3 

An atom has one valence electron, whose ground state is 
the 3s orbital (because the orbitals below that are filled).  
The energy levels available to the electron are shown in the 
diagram at right.  

(a)  A researcher excites the electron to the 5s orbital.  
Identify all the routes that the electron can take to return 
to its 3s ground state via spontaneous E1 radiation. 

(b)  Is it a reasonable approximation to ignore E2, E3, …
radiation when answering the above question?  Throw some
numbers together to estimate whether it is or isn’t reasonable. 

Problem 4

A particle of mass m and charge q sits in a 1D infinite well that 
runs from x = 0 to x = L and has V = 0 within the well, as usual.  
The energy eigenstates of the particle are our familiar friends: 

	 	 ψ n(x) =
2
L
sin nπ x

L
⎛
⎝⎜

⎞
⎠⎟ . 

The impenetrable walls of this ∞ well are capacitor plates.  At time t = 0, they begin to charge up, which 
subjects the particle to the time-dependent perturbation 

	 	 V (x,t) = qE0x 1− e
−t /τ( ) ,    where E0 and τ are known constants. 

The particle was in its ground state at times t ≤ 0.  What is the probability that the electric force from the 
capacitor plates causes it to transition to the first excited state of the uncharged capacitor-well at times t > 0?  
You may assume that V(x,t) is very small compared to the particle’s kinetic energy.  If your answer involves any 
integral(s), set them up clearly and completely, but DO NOT EVALUATE THEM, just assign them a symbol. 

Problem 5

At times t ≤ 0, an electron is sitting in the ground state of a hydrogen (Z=1) atom.  At time t = 0, an Elven Mage 
casts a magic spell and instantly transforms the hydrogen nucleus to a helium nucleus (Z=2).  

(a)  An instant later, at time t = 0+, a Dwarven Cleric measures the principal quantum number n of the electron 
(which is now in a helium atom).  What is the probability that the Dwarven Cleric obtains n = 1?  If your answer 
involves any integral(s), set them up clearly and completely, but DO NOT EVALUATE THEM, just assign them 
a symbol.

(b)  The Dwarven Cleric took an “instant” to make their measurement, by which we mean an arbitrarily small 
amount of time.  Estimate how fast this “instant” would have to be for your answer to part (a) to be 
approximately accurate. 
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44. Clebsch-Gordan coefficients 1

44. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 44.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

1D SHO  Ĥ (x) = 1
2m

p̂2 +m2ω 2 x2( )     Define 
 
x0 ≡

!
mω

,  ξ ≡ x
x0

  →  
 
Ĥ (ξ ) = !ω

2
ξ 2 − d 2

dξ 2
⎛
⎝⎜

⎞
⎠⎟

   
 
En = n + 12( )!ω ,   ψ n(x) =

1
π x0

2

⎛
⎝⎜

⎞
⎠⎟

1/4
1
2nn!

Hn
x
x0

⎛
⎝⎜

⎞
⎠⎟
e
− x2

2x0
2
   with Hermite poly.:  

   
 
â± = 1

2
ξ ∓ d

dξ
⎛
⎝⎜

⎞
⎠⎟

 :  
â+ψ n = n +1ψ n+1

â–ψ n = n ψ n−1
,  

 

x̂ = x0 ( â+ + â− ) / 2
p̂ = i!( â+ − â− ) / ( 2 x0 )

,  
 

â− , â+[ ] = 1
Ĥ = !ω â+â− + 1

2( )    

Atomic 
Structure
Bohr
magneton :  

 
µB =

e!
2me

gyromag.
ratio γ :   

!
µJ = γ

!
J ,   γ classical =

e
2m

g factor:  
 

!
µL =

e
2m
!
L ,   

 

!
µS = g

e
2m
!
S ,   gspin-1/2

point
particle

= 2  

Hund
rules :  1. Max S     2. Max L

3. Min J  for ≤  1/2-filled shells    l = 0 1 2 3 4...
s p d f g...  termsymbol :

2S+1LJ  

H0 ξ( ) = 1, H2 ξ( ) = 4ξ 2 − 2,

H1 ξ( ) = 2ξ , H 3 ξ( ) = 8ξ 3 − 12ξ ,

Hn ξ( ) = −1( )n e ξ 2 dn

dξ n
e−ξ
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Perturbation Theory – Time-Independent        H = H0 + ′H    
 

• H0  solvable w eigen-* En
(0){ }, n(0){ }

• ′H ≪H0

   Expansions for eigen-* of H :       En = En
(0) + En

(1) +!    &      n = n(0) + n(1) +!

   For a non-degenerate eigenvalue En
(0)  of H0 :    n(1) = ′Hmn

En
(0) − Em

(0)
m≠n
∑ m(0)     with ′Hmn ≡ m(0) ′H n(0)

	 En
( j ) = n(0) ′H n( j−1)     →     En

(1) = ′Hnn ,   En
(2) =

′Hmn
2

En
(0) − Em

(0)
m≠n
∑

   For a degenerate eigenvalue ED
(0)  of H0 : 

	 • Let α 1
(0) , ..., α n

(0){ } = degen. subspace D sharing e-value ED
(0)

	 • Find β1
(0) , ..., β n

(0){ }  = e-vectors of H ′ within subspace D

	 	 	 = linear combinations of α i
(0)  states that diagonalize H′ 

	 ⇒ 1st order energy correction is Eβi
(1) = β i

(0) ′H β i
(0)

Perturbation Theory – Time Dependent    ! H (t) = H (0) + ′H (t)   ● En
(0), n(0){ }  = the eigen-* of H (0)

	 ψ (t) = cn(t) e
− iωnt n(0)

n
∑   where  

 
i! "c f (t) = ′Hfn e

iω fntcn(t)
n
∑

	    

• ω fn ≡ E f
(0) − En

(0)( ) / !

• ′Hfn ≡ f (0) ′H n(0)

To 1st order in  ′H ≪ H (0) , with ψ (t0 ) = i(0)  :   
 
c f (t) ≈ δ fi +

1
i!

′Hfi ( ′t ) e
iω fi ′t d ′t

t0

t
∫   →  Pi→ f = c f (t)

2

	 relevant math for analyzing time- & frequency-dependence :  sin(x)
x x→0

⎯ →⎯⎯ 1 ,     sin
2(ax)
a x2 a→∞⎯ →⎯⎯ πδ (x)

	 Fermi’s Golden Rule :  
 
Wi→ f ≡

Pi→ f

t
= 2π
!
Vfi

2
n(Ef )   at resonance  

 

Ef = Ei ± !ω  for ′H =V (r) eiωt + e− iωt( )
Ef = Ei           for ′H =V (r) Θ(t)

	

E1 radiation : when 
 

λ ≫ r  and
FB  negligible ,   

 

′H =V (!r ) cos(ωt)
V (!r ) ≈ −q

!
E0 ⋅
!r   →  

E1
selection
rules

:

	 spontaneous 
emission rate

 = Einstein’s 
 
Ai→ f =

ω if
3 q2 !rfi

2

3πε0"c
3  with   

!rfi ≡ f (0) !r i(0)

	  lifetime  τ i =
1
Ai→ ff∑

Variational Principle
     " Egs ≤ ψ H ψ  ∀ ψ 

Sudden / Adiabatic Approx
     " ψ / n unchanged by ΔH

For the atom as a whole

  (a)  ΔS = 0
  (b)  ΔL = 0, ±1  (L = 0 ↔︎ L′ = 0 forbidden)
  (c)  ΔML = 0, ±1
  (d)  ΔJ = 0, ±1  (J = 0 ↔︎ J′ = 0 forbidden)
  (e)  ΔMJ = 0, ±1

For the electron making the E1 transition

  (a)  Δl = ±1            (c)  spin unchanged:
  (b)  Δml = 0, ±1                Δms = 0



Old Quantum Theory (1900–1925)

 

E = hf = !ω
p = h / λ = !k

	        Quantization
      Rules :  E = nh ,  

 

pq ⋅dq = nqh
  one
period

!∫     Correspondence
      Principle : CM is recovered in the limit

of large quantum #s (n→∞)

Probability and some 3D Calculus
for a probability
distribution P(x) :   mean x = P(x) x dx

xmin

xmax∫ ,     variance σ x
2 ≡ x − x( )2 = x2 − x 2 ,       σ x ≡  standarddeviation

3D operators in   
Cartesian coord's

:       
!r = x x̂ + y ŷ + z ẑ             

 

!
∇ = x̂ ∂

∂x
+ ŷ ∂

∂y
+ ẑ ∂

∂z
                

 
∇2 ≡

!
∇⋅
!
∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

GGS Theorems :   
 

!
∇f ⋅d

!
l!a

!
b

∫ = f
!
b( )− f !a( )        

 

!
∇×
!
E( ) ⋅d !A =

!
E ⋅d
!
l

∂Surf"∫Surf∫       
 

!
∇⋅
!
E( )dV

Vol∫ =
!
E ⋅d
!
A

∂Vol"∫

Wave Mechanics              The inner product of two wavefunctions f & g : 
 
f g ≡ f (!r )*

−∞

+∞

∫ g(!r ) d 3!r  

Physical observables Q correspond to Hermitian operators Q̂  ≡ linear operators with this defining property

(presented in three equivalent forms) :    1. Q *= Q       2. Ψ Q̂Ψ = Q̂Ψ Ψ  i.e.Q̂  is self-adjoint     

                                                                 3. eigenstates of Q̂  are complete over their Hilbert space

Schrödinger
  Equation :  

 
ĤΨ = i! ∂Ψ

∂t
          

 

Operators in 
3D !r -space :       

 

!̂p = "
i
!
∇ ,         

!̂r = !r ,     
 
Ĥ = p̂2

2m
+V = − !

2∇2

2m
+V ("r )

Eigenfunctions of p̂, x̂  with Dirac normalization:     ψ p (x) = e
ipx/! / 2π! ,      ψ ′x (x) = δ (x − ′x )

Boundary
Conditions on
wavefunctions:

a.  Wavefunctions are always continuous.
b.  Wavefunctions have continuous derivatives, except at points where V = ±∞
          where 

 
lim
ε→0

′ψ (x + ε )− ′ψ (x − ε ) = 2m / !2( ) lim
ε→0

V (x)ψ (x)dx
x−ε

x+ε

∫
c.  Wavefunctions are zero in any region where V = ∞ .

 

Probability    
density ρ(!r ,t)

= Ψ(!r ,t) 2

= Ψ* Ψ    
       

 

Prob. current
density

!
j (!r ,t) = Re Ψ*

!̂p
m

Ψ
⎡

⎣
⎢

⎤

⎦
⎥        ContinuityEquation : 

 
− ∂ρ
∂t

=
!
∇⋅
!
j       

 
R,T =

!
jre,tr ⋅

!
A

!
jin ⋅
!
A

  

Expectation
Value

 Q  of observable  Q(
!r , !p)  :   

 
Q ≡ Ψ Q̂Ψ ≡ Ψ*

−∞

+∞

∫ Q̂ !r , – i"
!
∇( )Ψ d 3!r     

        Ehrenfest'sTheorem  : Expectation values
follow classical laws.

   p
m

=
d x
dt

,    d p
dt

= − dV
dx

          Virial
Theorem :   2 T = x dV

dx

Representations of a state ψ  & operator Â  : In the eigenbasis eq{ }  of any Hermitian operator Q̂ ,

  • Wavefuncn repres :  
 
f g =

!
f *(q) !g(q)dq∫       • Matrix repres :                 inner product   f g =

!
f *T !g

      
     wavefunction  ψ (q) = eq ψ  

&  differential operator  Â(q, ∂
∂q

, ∂2

∂q2 ,...)
            columnvector   

 

!
ψ =

e1 ψ

e2 ψ
...

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  & 
matrix
with

elements
 Ai j = ei Â ej

e.g. wavefunction conversion
between x- and p-space :  

 
ψ (x) = 1

2π!
ei px/!φ(p) dp

−∞

+∞

∫  ⇔  
 
φ(p) = 1

2π!
e−i px/!ψ (x) dx

−∞

+∞

∫

e.g.  Operators in 
1D p-space :       p̂ = p ,     

 
x̂ = i! ∂

∂p
,     

 
Ĥ = p2

2m
+V i! ∂

∂p
⎛
⎝⎜

⎞
⎠⎟
	



Commutator :  Â, B̂⎡⎣ ⎤⎦ ≡ Â B̂ − B̂ Â 	 Theorem : Operators that commute share a common set of eigenstates.

Uncertainty
Principle :     σ Aσ B ≥ 1

2i
Â, B̂⎡⎣ ⎤⎦       e.g.  

 
σ xσ p ≥

!
2

        Time-dep. of
Expec. Value  : 

 

d Q̂
dt

= i
!

Ĥ , Q̂⎡⎣ ⎤⎦ + ∂Q̂
∂t

Axioms of QM
1.  The STATE of a QM system is represented by a vector Ψ(t)  in a Hilbert space (≈ Inner Product Space). 

2.  OBSERVABLES Q are represented by Hermitian operators Q̂ .  In x-space ≡ the eigenbasis of the position

operator x̂ , the phase space operators are x̂ = x  & 
 
p̂x =

!
i
∂
∂x

, and those of dependent observables are Q̂(x̂, p̂) . 

3.  MEASUREMENT of an observable Q will yield one of its eigenvalues q, and the state of the system will 
change from ψ to the corresponding eigenstate eq .  Allowed eigenstates are constrained by physical 
requirements such as boundary conditions and normalizability. 

4.  The PROBABILITY of measuring a particular eigenvalue q from a state ψ  is P(q) = eq ψ
2
.

5.  The TIME-EVOLUTION of a quantum state is given by the Schrödinger Equation, 
 
i! d
dt

Ψ(t) = Ĥ Ψ(t) . 

6.  A multiparticle state containing two IDENTICAL PARTICLES is symmetric/anti-symmetric under their 
exchange if the particles are bosons (integer spin) / fermions (half-integer spin). 

Miscellaneous Math    Gaussian
prob distn :   P(x; x0,σ ) =

1
2πσ

e− x−x0( )2/ 2σ 2   Sums : 1= µ +1
j=0

µ

∑ ,  j = µ +1( ) µ
2j=0

µ

∑

Gaussian
Integrals 	 e−ax

2−bx dx = π
a
e
b2
4a

−∞

+∞

∫      xe−ax
2−bx dx = − π b

2a3/2
e
b2
4a

−∞

+∞

∫    x2 e−ax
2−bx dx = π

4a5/2
2a + b2( )e

b2
4a

−∞

+∞

∫

Exponential
Integrals 	 xn e−x dx

0

∞

∫ = Γ(n +1) = n!     xe−ax dx∫ = − e
−ax

a2
ax +1( )      x2 e−ax dx∫ = − e

−ax

a3
a2x2 + 2ax + 2( )

Sinusoidal
Integrals 	

sin2(aφ)
cos2(aφ)

dφ =
0

π

∫
π
2
− sin(2πa)

4a
      sin(nφ) sin(mφ)

cos(nφ)cos(mφ) dφ = δ nm0

π

∫      sin(nφ) cos(mφ)dφ = 0
0

π

∫
Fourier
Integrals 	 f (x) = 1

2π
A(k)

–∞

+∞

∫ eikx dk   where  A(k) = 1
2π

f (x)e− ikx dx
−∞

+∞

∫

Dirac δ
function

 :   δ (x) = 1
2π

eiqx dq
−∞

+∞

∫    Defining
Properties  : 

1. δ (x) = 0  when x ≠ 0
2. δ (x) = ∞ when x = 0
3. δ (x)dx

−∞

+∞

∫ = 1
  OR  δ (x) f (x)dx

−∞

+∞

∫ = f (0)

Classical Mechanics security blanket  ☺︎ "

 L qi , !qi ,t( ) = T −U       Lagrange EOM: 
 
  ∂L
∂qi

= d
dt

∂L
∂ !qi

⎛
⎝⎜

⎞
⎠⎟

 H ≡ !qi (∂L / ∂ !qi )− L  equals T+U when  
!ra =
!ra (qi )

dH / dt = −∂L / ∂t

Common
Forces : Fgrav =

Gm1m2

r2
,  Felec =

q1q2
4πε0 r

2 ,  Fcf =
mv2

r

Generalized momentum 
 
pi ≡

∂L
∂ !qi

, force Qi ≡
∂L
∂qi

Hamilton’s EOM:   − ∂H
∂qi

= dpi
dt

,    ∂H
∂pi

= dqi
dt

Special Relativity:  E2 = (pc)2 + (mc2 )2

γ = 1
1− (v / c)2

, E = γ mc2 , p = γ mv ,  v = pc2

E



Constants : mec
2 = 0.511 MeV       

 
!c = 197 MeV ⋅ fm

≈ 200 MeV ⋅ fm 	
 
α ≡ e2

4πε0!c
= 1
137

	
 
a0 ≡

4π ε0 !
2

mee
2 = (!c)

α (mec
2 )

Angular Momentum     
 
L̂2 = !r × "

i
!
∇

2

= −"2 1
sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2θ

∂2

∂φ 2
⎡

⎣
⎢

⎤

⎦
⎥

 
L̂x = +i! sinφ ∂

∂θ
+ cosθ
sinθ

cosφ ∂
∂φ

⎛
⎝⎜

⎞
⎠⎟

,    
 
L̂y = −i! cosφ ∂

∂θ
− cosθ
sinθ

sinφ ∂
∂φ

⎛
⎝⎜

⎞
⎠⎟

,    
 
L̂z = −i! ∂

∂φ

Spin & Angular Momentum : L, l can be replaced by S, s! [L2,Lx,y,z ]= 0 ,       
 
Lx ,Ly⎡⎣ ⎤⎦ = i!Lz , etc

 L
2 l m = !2l l +1( ) l m ,     Lz l m = !m lm ,    L± = Lx ± iLy ,     L± l m = ! l(l +1)−m(m ±1) l m ±1( )

Pauli Spin Matrices  
 
Sx , Sy, Sz{ } = !2 σ x ,σ y,σ z{ }    where  σ x ,σ y,σ z =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
, 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟
, 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

Spherical Harmonics  Y l
m (θ ,φ) ,	 m = −l,...,l  in steps of 1" H-like atom : radial e-functions Rnl (r)

Z e ≡  nuclear charge (Z=1 is hydrogen)

R10 = 2 Z
a0

⎛
⎝⎜

⎞
⎠⎟

3/2

exp − Zr
a0

⎛
⎝⎜

⎞
⎠⎟

R20 =
Z

2a0

⎛
⎝⎜

⎞
⎠⎟

3/2

2 − Zr
a0

⎛
⎝⎜

⎞
⎠⎟

exp − Zr
2a0

⎛
⎝⎜

⎞
⎠⎟

R21 =
1
3

Z
2a0

⎛
⎝⎜

⎞
⎠⎟

3/2
Zr
a0

⎛
⎝⎜

⎞
⎠⎟

exp − Zr
2a0

⎛
⎝⎜

⎞
⎠⎟

 En = −
Zα( )2

2n2 mec
2( )  for n = 1,2,3,...
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Spherical Coordinates    Line Element: 
 
d
!
l = dr !r̂ + r d! !!̂ + r sin! d" !"̂  

 

x = r sin! cos"   x̂ = sin! cos" !r̂ + cos! cos" !!̂ # sin" !"̂  

y = r sin! sin"   ŷ = sin! sin" !r̂ + cos! sin" !!̂ + cos" !"̂  

z = r cos!    ẑ = cos! !r̂ " sin! !!̂  

 

r = x
2
+ y

2
+ z

2   r̂ = sin! cos" ! x̂ + sin! sin" ! ŷ + cos! ! ẑ  

! = tan
"1
( x

2
+ y

2
/ z)  !̂ = cos! cos" ! x̂ + cos! sin" ! ŷ # sin! ! ẑ  

! = tan
"1
(y / x)   !̂ = " sin! ! x̂ + cos! ! ŷ  

Gradient: 
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"V
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Divergence: 
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Curl:  
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Acceleration: 
 

!
a = r̂ ""r ! r "" 2 ! r "# 2 sin2"$% &' + "̂ r""" + 2 "r "" ! r "# 2 sin" cos"$% &' + #̂ sin" (r""# + 2 "r "#) + cos" (2r "" "#)$% &'  

Cylindrical Coordinates   Line Element: 
 
d
!
l = ds! ŝ + sd! !!̂ + dz! ẑ !   

 

x = scos!    x̂ = cos! ! ŝ " sin! !!̂  

y = ssin!    ŷ = sin! ! ŝ + cos! !!̂  

z = z     ẑ = ẑ  

 

s = x
2
+ y

2    ŝ = + cos! ! x̂ + sin! ! ŷ  

! = tan
"1
(y / x)   !̂ = " sin! ! x̂ + cos! ! ŷ  

z = z     ẑ = ẑ  

Gradient: 
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Divergence: 
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Acceleration: 
 

!
a = ŝ ""s ! s "" 2#$ %& + "̂ s""" + 2 "s ""#$ %& + ẑ ""z[ ]  

 !s  !"  !z  

ŝ  0 !̂  0 

!̂  0 ! ŝ  0 

ẑ  0 0 0 

 

 !r  !
"

 !"  

r̂  0 !̂  sin! "̂  

!̂  0 !r̂  cos! "̂  

!̂  0 0 
! sin" r̂  

! cos""̂  

 



f (x) = f (n) (x0 )
n!

(x − x0 )
n

n=0

∞

∑

• (1+ x)n ≈ 1+ nx

• sin x ≈ x

• cos x ≈ 1− x2

2

• ex ≈ 1+ x • ln(1+ x) ≈ x

• tan x ≈ x

• sin−1 x ≈ x

• tan−1 x ≈ x

• cos−1 x ≈ π
2
− x

Integral Table

sin2φ dφ
0

2π

∫ = cos2φ dφ
0

2π

∫ = π

eiθ = cosθ + i sinθ

im
ag

 

x 
� 

 z = x + iy = re
iθ

r 

real 

y 

 z* ≡ x − iy = re
− iθ

 | z | ≡ z * z = r

cosnθ  sinθ  dθ = −
cosn+1θ
n +1∫

dx
a2 + x2

=
1
a
tan−1 x

a
⎛
⎝⎜

⎞
⎠⎟∫

dx
x2 ± a2

= ln x + x2 ± a2( )∫

dx
(a2 ± x2 )3/2

=
x

a2 a2 ± x2∫

 

x dx
a2 ± x2( )3/2

= 
1

a2 ± x2∫

x dx
a2 ± x2

= ± a2 ± x2∫

x dx
a2 ± x2

= ±
1
2
ln a2 ± x2( )∫

(x − acosθ) sinθ  dθ
(x2 + a2 − 2ax cosθ)3/2

=
1
x2

a − x cosθ
x2 + a2 − 2ax cosθ∫

dx
a2 − x2

= sin−1 x
a

⎛
⎝⎜

⎞
⎠⎟∫

a2 − x2 dx =
x
2

a2 − x2 +
a2

2
tan−1 x

a2 − x2
⎛
⎝⎜

⎞
⎠⎟∫

x2 ± a2 dx =
x
2

x2 ± a2 ±
a2

2
ln x + x2 ± a2∫

 

v = (v ⋅ r̂i ) r̂i
i=1

3

∑

df (x1,..., xn ) =
∂f
∂xi
 dxi

i=1

n

∑

 
d

lpath =

d

l
du
 du

 
cos

θ
2

⎛
⎝⎜

⎞
⎠⎟
=

1+ cosθ
2  

sin
θ
2

⎛
⎝⎜

⎞
⎠⎟
=

1− cosθ
2

x2

a2 − x2
dx = −

x
2

a2 − x2 +
a2

2
tan−1 x

a2 − x2
⎛
⎝⎜

⎞
⎠⎟∫

 
d

A =

∂

l

∂u
×
∂

l
∂v

⎛
⎝⎜

⎞
⎠⎟
dudv

 
dV =

∂

l

∂u
×
∂

l
∂v

⎛
⎝⎜

⎞
⎠⎟
⋅
∂

l

∂w
dudvdw

x dx
(a ± x)2

= a
a ± x

+ ln a ± x( )∫

 

dx
(a ± x)2

 =  1
a ± x∫

Taylor

cosa cosb = 1
2 cos(a + b) + cos(a − b)[ ]

0° 30° 45° 60° 90° 

sin 0 1 

cos 1 0 

tan 0 1 

1
2

3
2

1
2

1
2

1
2

3
2

3
1
3

∞

sin(a + b) = sina cosb + cosa sinb
cos(a + b) = cosa cosb − sina sinb

Complex Numbers

sina sinb = 1
2 cos(a − b) − cos(a + b)[ ]

1st order approx for           :   x 1

Conceptual 
version: 

 
d

lu ≡

∂

l

∂u
du

 d

lpath = d


lu

 d

A = d


lu × d


lv

 dV = (d

lu × d


lv ) ⋅d


lw

 
v ≡ v ⋅ v

cos3θ dθ∫ = sinθ −
sin3θ
3

sin3θ dθ∫ =
cos3θ
3

− cosθ
dx

a2 − x2
=
1
2a
ln a + x

a − x
⎛
⎝⎜

⎞
⎠⎟∫

ln(ax)
x

 dx = 1
2
ln(ax)[ ]2∫

sin2φ dφ∫ =
φ
2
−
sin(2φ)
4

cos2φ dφ∫ =
φ
2
+
sin(2φ)
4

ln(ax) dx = x ln(ax) − x∫

sina cosb = 1
2 sin(a + b) + sin(a − b)[ ]

dx
x x2 − a2

=
1
a
cos−1 a

x
⎛
⎝⎜

⎞
⎠⎟∫


