Physics 487 Midterm Exam \#2 Spring 2021 Thursday April 29, 11:00 am - 12:20 pm

This is a closed book exam. No use of calculators or any other electronic devices is allowed except to view this file.

You have 75 minutes to work the problems and
5 minutes to photograph your answers and upload using the my.physics course upload tool.
At the beginning of the exam:

1) Write your name and netid on your answer booklet(s).
2) Turn your cell phone off.
3) Put away all calculators, phones, computers, notes, and books.

During the exam:

1) Show your work and/or reasoning. Answers with no work or explanation get no points. But ...
2) Don't write long essays explaining your reasoning. We only need to see enough work to confirm that you understand what you're doing and are not just guessing. (If you are guessing, explain that, then verify your guess explicitly.) A good annotated sketch is often the best explanation of all!
3) All question parts on this exam are independent: you can get full points on any part even if your answers to all the other parts are incorrect. You should attempt all the question parts! If you get stuck, move on to the next one and come back later. The worst thing you can do is stall on one question and not get to others whose solution may be very simple.
4) Partial credit will be given for incorrect answers if the work is understandable and some of it is correct. IMPORTANT: If you think you've made a mistake but can't find it, explain what you think is wrong \rightarrow you may well get partial credit for noticing your error!
5) It is fine to leave answers as radicals or irreducible fractions (e.g. $10 \sqrt{3}$ or $5 / 7$), but you will lose points for not simplifying answers to an irreducible form (e.g. $24\left(x^{2}-y^{2}\right) /(\sqrt{9} x-\sqrt{9} y)$ is unacceptable.)

Academic Integrity:

The giving of assistance to or receiving of assistance from another person, or the use of unauthorized materials during University Examinations can be grounds for disciplinary action, up to and including expulsion from the University.

Please remember: "no work, no points". Everything that isn't on the formula sheets 486-Final or 487-Midterm2 needs to be derived and/or explained.

> You have 75 minutes to work +5 to upload
> \rightarrow upload by 12:20 pm

Problem 1

A particle is located in this potential:

$$
V(x)=A\left(\frac{\sin (x)}{x}\right)^{2}
$$

(a) Write down a trial wavefunction that could be used with the variational principle (v.p.) to estimate the ground state of this system.
(b) Write down a trial wavefunction that could be used with the v.p. to estimate the first excited state.
(c) Write down a potential $V(x)$ that would make it impossible to estimate the first excited state using the v.p. and explain why you chose what you did.

Problem 2

Consider a quantum system with only three linearly-independent states. The Hamiltonian of the system is $H=H_{0}+H^{\prime}$ where H^{\prime} is a perturbation that is very small compared to the unperturbed Hamiltonian H_{0}. Using as our basis the energy eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}=\left\{\left|1^{(0)}\right\rangle,\left|2^{(0)}\right\rangle,\left|3^{(0)}\right\rangle\right\}$ of the unperturbed Hamiltonian, the matrix representations of H_{0} and H^{\prime} are :

$$
\mathbf{H}=\mathbf{H}_{0}+\mathbf{H}^{\prime} \quad \text { where } \quad \mathbf{H}_{0}=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8
\end{array}\right) \quad \text { and } \quad \mathbf{H}^{\prime}=\varepsilon\left(\begin{array}{ccc}
1 / 2 & -2 & 0 \\
-2 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

"Appropriate units" are in use (i.e. ignore units), and the parameter ε multiplying the perturbation \mathbf{H}^{\prime} is a small dimensionless number $\ll 1$.
(a) Calculate the first eigenvalue E_{1} of H to $0^{\text {th }}+1^{\text {st }}+2^{\text {nd }}$ order in ε.

There are more questions on the next page.

Problem 3

An atom has one valence electron, whose ground state is the 3 s orbital (because the orbitals below that are filled). The energy levels available to the electron are shown in the diagram at right.
(a) A researcher excites the electron to the 5 s orbital. Identify all the routes that the electron can take to return to its 3 s ground state via spontaneous E1 radiation.
(b) Is it a reasonable approximation to ignore $\mathrm{E} 2, \mathrm{E} 3, \ldots$ radiation when answering the above question? Throw some numbers together to estimate whether it is or isn't reasonable.

Problem 4

A particle of mass m and charge q sits in a 1D infinite well that runs from $x=0$ to $x=L$ and has $V=0$ within the well, as usual. The energy eigenstates of the particle are our familiar friends:

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

The impenetrable walls of this ∞ well are capacitor plates. At time $t=0$, they begin to charge up, which subjects the particle to the time-dependent perturbation

$$
V(x, t)=q E_{0} x\left(1-e^{-t / \tau}\right), \quad \text { where } E_{0} \text { and } \tau \text { are known constants. }
$$

The particle was in its ground state at times $t \leq 0$. What is the probability that the electric force from the capacitor plates causes it to transition to the first excited state of the uncharged capacitor-well at times $t>0$? You may assume that $V(x, t)$ is very small compared to the particle's kinetic energy. If your answer involves any integral(s), set them up clearly and completely, but DO NOT EVALUATE THEM, just assign them a symbol.

Problem 5

At times $t \leq 0$, an electron is sitting in the ground state of a hydrogen $(\mathrm{Z}=1)$ atom. At time $t=0$, an Elven Mage casts a magic spell and instantly transforms the hydrogen nucleus to a helium nucleus ($Z=2$).
(a) An instant later, at time $t=0+$, a Dwarven Cleric measures the principal quantum number n of the electron (which is now in a helium atom). What is the probability that the Dwarven Cleric obtains $n=1$? If your answer involves any integral(s), set them up clearly and completely, but DO NOT EVALUATE THEM, just assign them a symbol.
(b) The Dwarven Cleric took an "instant" to make their measurement, by which we mean an arbitrarily small amount of time. Estimate how fast this "instant" would have to be for your answer to part (a) to be approximately accurate.

1D SHO $\hat{H}(x)=\frac{1}{2 m}\left(\hat{p}^{2}+m^{2} \omega^{2} x^{2}\right) \quad$ Define $x_{0} \equiv \sqrt{\frac{\hbar}{m \omega}}, \quad \xi \equiv \frac{x}{x_{0}} \rightarrow \hat{H}(\xi)=\frac{\hbar \omega}{2}\left(\xi^{2}-\frac{d^{2}}{d \xi^{2}}\right)$ $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, \quad \psi_{n}(x)=\left(\frac{1}{\pi x_{0}^{2}}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}\left(\frac{x}{x_{0}}\right) e^{-\frac{x^{2}}{2 x_{0}^{2}}} \quad$ with Hermite poly.: $\begin{array}{ll}H_{0}(\xi)=1, & H_{2}(\xi)=4 \xi^{2}-2, \\ H_{1}(\xi)=2 \xi, & H_{3}(\xi)=8 \xi^{3}-12 \xi,\end{array}$ $\hat{a}_{ \pm}=\frac{1}{\sqrt{2}}\left(\xi \mp \frac{d}{d \xi}\right): \begin{aligned} & \hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \begin{array}{l}\hat{x}=x_{0}\left(\hat{a}_{+}+\hat{a}_{-}\right) / \sqrt{2} \\ \hat{a_{-}} \psi_{n}=\sqrt{n} \psi_{n-1}\end{array} \quad \begin{array}{l}{\left[\hat{a}_{-}, \hat{a}_{+}\right]=1}\end{array} \quad H_{n}(\xi)=(-1)^{n} e^{\xi^{2}} \frac{d^{n}}{d \xi^{n}} e^{-\xi^{2}}\end{aligned}$

Atomic
Structure
$\begin{aligned} & \mathrm{Bohr} \\ & \text { magneton }: ~\end{aligned} \mu_{B}=\frac{e \hbar}{2 m_{e}}$
$\underset{\text { ratio } \gamma}{\text { gyromag. }}: \vec{\mu}_{J}=\gamma \vec{J}, \quad \gamma_{\text {classical }}=\frac{e}{2 m}$
g factor: $\vec{\mu}_{L}=\frac{e}{2 m} \vec{L}, \quad \vec{\mu}_{S}=g \frac{e}{2 m} \vec{S}, g_{\substack{\text { spin-1/2 } \\ \text { point } \\ \text { paticle }}}=2$

Perturbation Theory - Time-Independent $\quad H=H_{0}+H^{\prime} \bullet H_{0}$ solvable w eigen-* $\left\{E_{n}^{(0)}\right\},\left\{\left|n^{(0)}\right\rangle\right\}$

- $H^{\prime} \ll H_{0}$

Expansions for eigen-* of $H: \quad E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+\cdots \quad \& \quad|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\cdots$
For a non-degenerate eigenvalue $E_{n}^{(0)}$ of $H_{0}: \quad\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle \quad$ with $H_{m n}^{\prime} \equiv\left\langle m^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$

$$
E_{n}^{(j)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(j-1)}\right\rangle \quad \rightarrow \quad E_{n}^{(1)}=H_{n n}^{\prime}, \quad E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{m n}^{\prime}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}
$$

For a degenerate eigenvalue $E_{D}^{(0)}$ of H_{0} :

- Let $\left\{\left|\alpha_{1}^{(0)}\right\rangle, \ldots,\left|\alpha_{n}^{(0)}\right\rangle\right\}=$ degen. subspace D sharing e-value $E_{D}^{(0)}$
- Find $\left\{\left|\beta_{1}^{(0)}\right\rangle, \ldots,\left|\beta_{n}^{(0)}\right\rangle\right\}=\underline{\text { e-vectors of } H^{\prime} \text { within subspace } D}$ = linear combinations of $\left|\alpha_{i}^{(0)}\right\rangle$ states that diagonalize \mathbf{H}^{\prime}

Variational Principle

$$
E_{\mathrm{gs}} \leq\langle\psi| H|\psi\rangle \forall \psi
$$

Sudden / Adiabatic Approx

ψ / n unchanged by ΔH
$\Rightarrow 1^{\text {st }}$ order energy correction is $E_{\beta_{i}}^{(1)}=\left\langle\beta_{i}^{(0)}\right| H^{\prime}\left|\beta_{i}^{(0)}\right\rangle$
Perturbation Theory - Time Dependent • $H(t)=H^{(0)}+H^{\prime}(t) \bullet\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}=$ the eigen-* of $H^{(0)}$
$|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle$ where $i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t)$

- $\omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar$
- $H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$

To $\underline{1 \text { st } \text { order }}$ in $H^{\prime} \ll H^{(0)}$, with $\left|\psi\left(t_{0}\right)\right\rangle=\left|i^{(0)}\right\rangle: \quad c_{f}(t) \approx \delta_{f i}+\frac{1}{i \hbar} \int_{t_{0}}^{t} H_{f i}^{\prime}\left(t^{\prime}\right) e^{i \omega_{f i} t^{\prime}} d t^{\prime} \rightarrow P_{i \rightarrow f}=\left|c_{f}(t)\right|^{2}$ relevant math for analyzing time- \& frequency-dependence : $\frac{\sin (x)}{x} \underset{x \rightarrow 0}{\longrightarrow} 1, \quad \frac{\sin ^{2}(a x)}{a x^{2}} \xrightarrow[a \rightarrow \infty]{ } \pi \delta(x)$ Fermi's Golden Rule : $W_{i \rightarrow f} \equiv \frac{P_{i \rightarrow f}}{t}=\frac{2 \pi}{\hbar}\left|V_{f i}\right|^{2} n\left(E_{f}\right)$ at resonance $\quad E_{f}=E_{i} \pm \hbar \omega$ for $H^{\prime}=V(r)\left(e^{i \omega t}+e^{-i \omega t}\right)$ $E_{f}=E_{i} \quad$ for $H^{\prime}=V(r) \Theta(t)$

E1 radiation : when $\begin{aligned} & \lambda \gg r \text { and } \\ & F_{B} \text { negligible },\end{aligned} \begin{aligned} & H^{\prime}=V(\vec{r}) \cos (\omega t) \\ & V(\vec{r}) \approx-q \vec{E}_{0} \cdot \vec{r}\end{aligned} \rightarrow \begin{gathered}\text { E1 } \\ \text { selection : } \\ \text { rules }\end{gathered}$
$\begin{aligned} & \text { spontaneous } \\ & \text { emission rate }\end{aligned}=$ Einstein's $A_{i \rightarrow f}=\frac{\omega_{i f}^{3} q^{2}\left|\vec{r}_{f i}\right|^{2}}{3 \pi \varepsilon_{0} \hbar c^{3}}$ with $\vec{r}_{f i} \equiv\left\langle f^{(0)}\right| \vec{r}\left|i^{(0)}\right\rangle$ lifetime $\tau_{i}=\frac{1}{\sum_{f} A_{i \rightarrow f}}$

For the electron making the E1 transition
(a) $\Delta l= \pm 1$
(c) spin unchanged:
(b) $\Delta m_{l}=0, \pm 1$
$\Delta m_{s}=0$

For the atom as a whole
(a) $\Delta S=0$
(b) $\Delta L=0, \pm 1 \quad\left(L=0 \leftrightarrow L^{\prime}=0\right.$ forbidden)
(c) $\Delta M_{L}=0, \pm 1$
(d) $\Delta J=0, \pm 1 \quad\left(J=0 \leftrightarrow J^{\prime}=0\right.$ forbidden $)$
(e) $\Delta M_{J}=0, \pm 1$
$\begin{array}{lc}E=h f=\hbar \omega & \text { Quantization } \\ p=h / \lambda=\hbar k & \text { Rules }\end{array}: E=n h, \oint_{\substack{\text { one } \\ \text { period }}} p_{q} \cdot d q=n_{q} h$

Correspondence. CM is recovered in the limit Principle : of large quantum $\# \mathrm{~s}(n \rightarrow \infty)$

Probability and some 3D Calculus

for a probability
distribution $P(x)$ mean $\langle x\rangle=\int_{x_{\text {min }}}^{x_{\max }} P(x) x d x, \quad$ variance $\sigma_{x}^{2} \equiv\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}, \quad \sigma_{x} \equiv \begin{aligned} & \text { standard } \\ & \text { deviation }\end{aligned}$
3D operators in
Cartesian coord's
$\vec{\nabla}=\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$
$\nabla^{2} \equiv \vec{\nabla} \cdot \vec{\nabla}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$
GGS Theorems : $\int_{\vec{a}}^{\vec{b}} \vec{\nabla} f \cdot d \vec{l}=f(\vec{b})-f(\vec{a}) \quad \int_{\text {Surf }}(\vec{\nabla} \times \vec{E}) \cdot d \vec{A}=\oint_{\partial \text { Surf }} \vec{E} \cdot d \vec{l} \quad \int_{\mathrm{Vol}}(\vec{\nabla} \cdot \vec{E}) d V=\oint_{\partial \mathrm{Vol}} \vec{E} \cdot d \vec{A}$

Wave Mechanics The inner product of two wavefunctions $f \& g:\langle f \mid g\rangle \equiv \int_{-\infty}^{+\infty} f(\vec{r})^{*} g(\vec{r}) d^{3} \vec{r}$ Physical observables Q correspond to Hermitian operators $\hat{Q} \equiv$ linear operators with this defining property (presented in three equivalent forms) : 1. $\langle Q\rangle^{*}=\langle Q\rangle \quad$ 2. $\langle\Psi \mid \hat{Q} \Psi\rangle=\langle\hat{Q} \Psi \mid \Psi\rangle$ i.e. \hat{Q} is self-adjoint 3. eigenstates of \hat{Q} are complete over their Hilbert space
$\begin{gathered}\text { Schrödinger } \\ \text { Equation }\end{gathered}: \hat{H} \Psi=i \hbar \frac{\partial \Psi}{\partial t} \quad \begin{gathered}\text { Operators in } \\ \text { 3D } \vec{r} \text {-space }\end{gathered}: \quad \hat{\vec{p}}=\frac{\hbar}{i} \vec{\nabla}, \quad \hat{\vec{r}}=\vec{r}, \quad \hat{H}=\frac{\hat{p}^{2}}{2 m}+V=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\vec{r})$
Eigenfunctions of \hat{p}, \hat{x} with Dirac normalization: $\quad \psi_{p}(x)=e^{i p x / \hbar} / \sqrt{2 \pi \hbar}, \quad \psi_{x^{\prime}}(x)=\delta\left(x-x^{\prime}\right)$
Boundary a. Wavefunctions are always continuous.
Conditions on b. Wavefunctions have continuous derivatives, except at points where $\boldsymbol{V}= \pm \infty$
wavefunctions: where $\lim _{\varepsilon \rightarrow 0} \psi^{\prime}(x+\varepsilon)-\psi^{\prime}(x-\varepsilon)=\left(2 m / \hbar^{2}\right) \lim _{\varepsilon \rightarrow 0} \int_{x-\varepsilon}^{x+\varepsilon} V(x) \psi(x) d x$
c. Wavefunctions are zero in any region where $\boldsymbol{V}=\infty$.
$\begin{array}{ll}\text { Probability } & =|\Psi(\vec{r}, t)|^{2} \\ \text { density } \rho(\vec{r}, t)=\Psi^{*} \Psi\end{array} \quad \begin{aligned} & \text { Prob. current } \\ & \text { density } \vec{j}(\vec{r}, t)\end{aligned}=\operatorname{Re}\left[\Psi^{*} \frac{\hat{\vec{p}}}{m} \Psi\right] \quad \begin{gathered}\text { Continuity } \\ \text { Equation }\end{gathered}:-\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \vec{j} \quad R, T=\frac{\overrightarrow{\vec{j}}_{\text {re,tr }} \cdot \vec{A}}{\overrightarrow{j_{\text {in }}} \cdot \vec{A}}$
Expectation
Value $\langle Q\rangle$ of observable $Q(\vec{r}, \vec{p}):\langle Q\rangle \equiv\langle\Psi \mid \hat{Q} \Psi\rangle \equiv \int_{-\infty}^{+\infty} \Psi * \hat{Q}(\vec{r},-i \hbar \vec{\nabla}) \Psi d^{3} \vec{r}$
$\begin{gathered}\text { Ehrenfest's } \\ \text { Theorem }\end{gathered}: \begin{gathered}\text { Expectation values } \\ \text { follow classical laws. }\end{gathered} \quad \frac{\langle p\rangle}{m}=\frac{d\langle x\rangle}{d t}, \quad \frac{d\langle p\rangle}{d t}=\left\langle-\frac{d V}{d x}\right\rangle \quad \begin{gathered}\text { Virial } \\ \text { Theorem }\end{gathered}: 2\langle T\rangle=\left\langle x \frac{d V}{d x}\right\rangle$
Representations of a state $|\psi\rangle$ \& operator \hat{A} : In the eigenbasis $\left\{\left|e_{q}\right\rangle\right\}$ of any Hermitian operator \hat{Q},

- Wavefunc ${ }^{n}$ repres : $\langle f \mid g\rangle=\int \vec{f}^{*}(q) \vec{g}(q) d q \quad$ - Matrix repres : inner product $\langle f \mid g\rangle=\vec{f}^{* T} \vec{g}$ wavefunction $\psi(q)=\left\langle e_{q} \mid \psi\right\rangle$
\& differential operator $\hat{A}\left(q, \frac{\partial}{\partial q}, \frac{\partial^{2}}{\partial q^{2}}, \ldots\right)$

$$
\underset{\substack{\text { vector } \\
\text { column }}}{\left.\cos =\left(\begin{array}{c}
\left\langle e_{1} \mid \psi\right\rangle \\
\left\langle e_{2} \mid \psi\right\rangle \\
\cdots
\end{array}\right) \& \begin{array}{c}
\text { matrix } \\
\text { with } \\
\text { elements }
\end{array} \mathbf{A}_{i j}=\left\langle e_{i}\right| \hat{A}\left|e_{j}\right\rangle\right) .}
$$

e.g. Wavefunction conversion $\begin{aligned} & \text { between } x \text { - and } p \text {-space }\end{aligned}: \psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} e^{i p x / \hbar} \phi(p) d p \Leftrightarrow \phi(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} e^{-i p x / \hbar} \psi(x) d x$
e.g. $\begin{gathered}\text { Operators in } \\ 1 \mathrm{D} p \text {-space }\end{gathered}: \quad \hat{p}=p, \quad \hat{x}=i \hbar \frac{\partial}{\partial p}, \quad \hat{H}=\frac{p^{2}}{2 m}+V\left(i \hbar \frac{\partial}{\partial p}\right)$

Commutator : $[\hat{A}, \hat{B}] \equiv \hat{A} \hat{B}-\hat{B} \hat{A}$ Theorem : Operators that commute share a common set of eigenstates.
Uncertainty :
Principle
$\sigma_{A} \sigma_{B} \geq\left|\frac{1}{2 i}\langle[\hat{A}, \hat{B}]\rangle\right|$
e.g. $\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2}$
$\underset{\text { Expec. Value }}{\text { Time-dep. of }}: \frac{d\langle\hat{Q}\rangle}{d t}=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle$

Axioms of QM

1. The STATE of a QM system is represented by a vector $|\Psi(t)\rangle$ in a Hilbert space (\approx Inner Product Space).
2. OBSERVABLES Q are represented by Hermitian operators \hat{Q}. In x-space \equiv the eigenbasis of the position operator \hat{x}, the phase space operators are $\hat{x}=x \& \hat{p}_{x}=\frac{\hbar}{i} \frac{\partial}{\partial x}$, and those of dependent observables are $\hat{Q}(\hat{x}, \hat{p})$.
3. MEASUREMENT of an observable Q will yield one of its eigenvalues q, and the state of the system will change from $|\psi\rangle$ to the corresponding eigenstate $\left|e_{q}\right\rangle$. Allowed eigenstates are constrained by physical requirements such as boundary conditions and normalizability.
4. The PROBABILITY of measuring a particular eigenvalue q from a state $|\psi\rangle$ is $P(q)=\left|\left\langle e_{q} \mid \psi\right\rangle\right|^{2}$.
5. The TIME-EVOLUTION of a quantum state is given by the Schrödinger Equation, $i \hbar \frac{d}{d t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$.
6. A multiparticle state containing two IDENTICAL PARTICLES is symmetric/anti-symmetric under their exchange if the particles are bosons (integer spin) / fermions (half-integer spin).

Miscellaneous Math $\underset{\operatorname{prob~dist}^{\mathrm{n}}}{\operatorname{Gaussian}}: \quad P\left(x ; x_{0}, \sigma\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}} \quad$ Sums : $\sum_{j=0}^{\mu} 1=\mu+1, \sum_{j=0}^{\mu} j=(\mu+1) \frac{\mu}{2}$
Gaussian $\quad \int_{-\infty}^{+\infty} e^{-a x^{2}-b x} d x=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}} \quad \int_{-\infty}^{+\infty} x e^{-a x^{2}-b x} d x=-\frac{\sqrt{\pi} b}{2 a^{3 / 2}} e^{\frac{b^{2}}{4 a}} \quad \int_{-\infty}^{+\infty} x^{2} e^{-a x^{2}-b x} d x=\frac{\sqrt{\pi}}{4 a^{5 / 2}}\left(2 a+b^{2}\right) e^{\frac{b^{2}}{4 a}}$
$\begin{aligned} & \text { Exponential } \\ & \text { Integrals }\end{aligned} \int_{0}^{\infty} x^{n} e^{-x} d x=\Gamma(n+1)=n!\quad \int x e^{-a x} d x=-\frac{e^{-a x}}{a^{2}}(a x+1) \quad \int x^{2} e^{-a x} d x=-\frac{e^{-a x}}{a^{3}}\left(a^{2} x^{2}+2 a x+2\right)$
$\begin{array}{ll}\text { Sinusoidal } & \int_{0}^{\pi} \sin ^{2}(a \phi) \\ \text { Integrals } \cos ^{2}(a \phi)\end{array} d \phi=\frac{\pi}{2}-\frac{\sin (2 \pi a)}{4 a} \quad \int_{0}^{\pi} \sin (n \phi) \sin (m \phi) d \phi=\delta_{n m} \quad \int_{0}^{\pi} \sin (n \phi) \cos (m \phi) d \phi=0$
Fourier
Integrals

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} A(k) e^{i k x} d k \text { where } A(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(x) e^{-i k x} d x
$$

Dirac δ function $: \delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i q x} d q \quad \begin{aligned} & \text { Defining } \\ & \text { Properties }\end{aligned}$

1. $\delta(x)=0$ when $x \neq 0$

Classical Mechanics security blanket ©
$L\left(q_{i}, \dot{q}_{i}, t\right)=T-U \quad$ Lagrange EOM: $\frac{\partial L}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)$
$H \equiv \dot{q}_{i}\left(\partial L / \partial \dot{q}_{i}\right)-L$ equals $T+U$ when $\vec{r}_{a}=\vec{r}_{a}\left(q_{i}\right)$
$d H / d t=-\partial L / \partial t$
Common $: F_{\text {grav }}=\frac{G m_{1} m_{2}}{r^{2}}, \quad F_{\text {elec }}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}}, \quad F_{\text {cf }}=\frac{m v^{2}}{r}, ~$

Generalized momentum $p_{i} \equiv \frac{\partial L}{\partial \dot{q}_{i}}$, force $Q_{i} \equiv \frac{\partial L}{\partial q_{i}}$
Hamilton's EOM: $-\frac{\partial H}{\partial q_{i}}=\frac{d p_{i}}{d t}, \quad \frac{\partial H}{\partial p_{i}}=\frac{d q_{i}}{d t}$
Special Relativity: $E^{2}=(p c)^{2}+\left(m c^{2}\right)^{2}$

$$
\gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}, E=\gamma m c^{2}, p=\gamma m v, v=\frac{p c^{2}}{E}
$$

Constants : $m_{e} c^{2}=0.511 \mathrm{MeV} \quad \begin{aligned} \hbar c & =197 \mathrm{MeV} \cdot \mathrm{fm} \\ & \approx 200 \mathrm{MeV} \cdot \mathrm{fm}\end{aligned} \quad \alpha \equiv \frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{1}{137} \quad a_{0} \equiv \frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=\frac{(\hbar c)}{\alpha\left(m_{e} c^{2}\right)}$
Angular Momentum $\quad \hat{L}^{2}=\left|\vec{r} \times \frac{\hbar}{i} \vec{\nabla}\right|^{2}=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]$
$\hat{L}_{x}=+i \hbar\left(\sin \phi \frac{\partial}{\partial \theta}+\frac{\cos \theta}{\sin \theta} \cos \phi \frac{\partial}{\partial \phi}\right), \quad \hat{L}_{y}=-i \hbar\left(\cos \phi \frac{\partial}{\partial \theta}-\frac{\cos \theta}{\sin \theta} \sin \phi \frac{\partial}{\partial \phi}\right), \quad \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi}$
Spin \& Angular Momentum : L, l can be replaced by $S, s \quad\left[L^{2}, L_{x, y, z}\right]=0, \quad\left[L_{x}, L_{y}\right]=i \hbar L_{z}$, etc $L^{2}|l m\rangle=\hbar^{2} l(l+1)|l m\rangle, \quad L_{z}|l m\rangle=\hbar m|l m\rangle, \quad L_{ \pm}=L_{x} \pm i L_{y}, \quad L_{ \pm}|l m\rangle=\hbar \sqrt{l(l+1)-m(m \pm 1)}|l(m \pm 1)\rangle$

Pauli Spin Matrices $\left\{S_{x}, S_{y}, S_{z}\right\}=\frac{\hbar}{2}\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\} \quad$ where $\sigma_{x}, \sigma_{y}, \sigma_{z}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Spherical Harmonics $Y_{l}^{m}(\theta, \phi), m=-l, \ldots, l$ in steps of 1

$$
\begin{aligned}
Y_{0}^{0} & =\left(\frac{1}{4 \pi}\right)^{1 / 2} & Y_{2}^{ \pm 2} & =\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
Y_{1}^{0} & =\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta & Y_{3}^{0} & =\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
Y_{1}^{ \pm 1} & =\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi} & Y_{3}^{ \pm 1} & =\mp\left(\frac{21}{64 \pi}\right)^{1 / 2} \sin \theta\left(5 \cos ^{2} \theta-1\right) e^{ \pm i \phi} \\
Y_{2}^{0} & =\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right) & Y_{3}^{ \pm 2} & =\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{ \pm 2 i \phi}
\end{aligned}
$$

$$
Y_{2}^{ \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi} \quad Y_{3}^{ \pm 3}=\mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta e^{ \pm 3 i \phi} \quad E_{n}=-\frac{(Z \alpha)^{2}}{2 n^{2}}\left(m_{e} c^{2}\right) \text { for } n=1,2,3, \ldots
$$

Spherical Coordinates

Line Element: $d \vec{l}=d r \hat{r}+r d \theta \hat{\theta}+r \sin \theta d \phi \hat{\phi}$

$$
\begin{array}{ll}
x=r \sin \theta \cos \phi & \hat{x}=\sin \theta \cos \phi \hat{r}+\cos \theta \cos \phi \hat{\theta}-\sin \phi \hat{\phi} \\
y=r \sin \theta \sin \phi & \hat{y}=\sin \theta \sin \phi \hat{r}+\cos \theta \sin \phi \hat{\theta}+\cos \phi \hat{\phi} \\
z=r \cos \theta & \hat{z}=\cos \theta \hat{r}-\sin \theta \hat{\theta} \\
r=\sqrt{x^{2}+y^{2}+z^{2}} & \hat{r}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \\
\theta=\tan ^{-1}\left(\sqrt{x^{2}+y^{2}} / z\right) & \hat{\theta}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z} \\
\phi=\tan ^{-1}(y / x) & \hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y}
\end{array}
$$

Gradient: $\quad \vec{\nabla} V=\frac{\partial V}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi}$
Laplacian: $\quad \nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}$
Divergence: $\quad \vec{\nabla} \cdot \vec{E}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta E_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial E_{\phi}}{\partial \phi}$
Curl: $\quad \vec{\nabla} \times \vec{E}=\frac{\hat{r}}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta E_{\phi}\right)-\frac{\partial E_{\theta}}{\partial \phi}\right]+\frac{\hat{\theta}}{r}\left[\frac{1}{\sin \theta} \frac{\partial E_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r E_{\phi}\right)\right]+\frac{\hat{\phi}}{r}\left[\frac{\partial}{\partial r}\left(r E_{\theta}\right)-\frac{\partial E_{r}}{\partial \theta}\right]$
Acceleration: $\quad \vec{a}=\hat{r}\left[\ddot{r}-r \dot{\theta}^{2}-r \dot{\phi}^{2} \sin ^{2} \theta\right]+\hat{\theta}\left[r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \dot{\phi}^{2} \sin \theta \cos \theta\right]+\hat{\phi}[\sin \theta(r \ddot{\phi}+2 \dot{r} \dot{\phi})+\cos \theta(2 r \dot{\theta} \dot{\phi})]$

$$
\begin{aligned}
& |\vec{v}| \equiv \sqrt{\vec{v} \cdot \vec{v}} \quad \vec{v}=\sum_{i=1}^{3}\left(\vec{v} \cdot \hat{r}_{i}\right) \hat{r}_{i} \quad d \vec{l}_{\text {path }}=\frac{d \vec{l}}{d u} d u \quad d \vec{A}=\left(\frac{\partial \vec{l}}{\partial u} \times \frac{\partial \vec{l}}{\partial v}\right) d u d v \quad \text { Conceptual } \quad d \vec{l}_{\text {path }}=d \vec{l}_{u} \\
& d f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i} \quad d V=\left(\frac{\partial \vec{l}}{\partial u} \times \frac{\partial \vec{l}}{\partial v}\right) \cdot \frac{\partial \vec{l}}{\partial w} d u d v d w \quad \begin{array}{ll}
d \vec{l}_{u} \equiv \frac{\partial \vec{l}}{\partial u} d u & d \vec{A}=d \vec{l}_{u} \times d \vec{l}_{v} \\
d V=\left(d \vec{l}_{u} \times d \vec{l}_{v}\right) \cdot d \vec{l}_{w}
\end{array}
\end{aligned}
$$

Taylor

$$
\begin{aligned}
& \text { Ior } \\
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

$1^{\text {st }}$ order approx for $x \ll 1$:

- $(1+x)^{n} \approx 1+n x$
- $\sin x \approx x$
- $\cos x \approx 1-\frac{x^{2}}{2}$
- $\sin ^{-1} x \approx x$
- $\tan x \approx x$
- $\cos ^{-1} x \approx \frac{\pi}{2}-x$
- $e^{x} \approx 1+x$
- $\tan ^{-1} x \approx x$
- $\ln (1+x) \approx x$

	$\mathbf{0}^{\circ}$	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$	$\mathbf{9 0}^{\circ}$
$\boldsymbol{\operatorname { s i n }}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\boldsymbol{\operatorname { c o s }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\boldsymbol{\operatorname { t a n }}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

$$
\sin a \sin b=\frac{1}{2}[\cos (a-b)-\cos (a+b)]
$$

$$
\cos a \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)]
$$

$$
\sin a \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)]
$$

Complex Numbers

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

$\tilde{z}^{*} \equiv x-i y=r e^{-i \theta}$
$|\tilde{z}| \equiv \sqrt{\tilde{z} * \tilde{z}}=r$

$$
\cos \left(\frac{\theta}{2}\right)=\sqrt{\frac{1+\cos \theta}{2}} \quad \sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{2}}
$$

Integral Table

$$
\begin{array}{lll}
\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \cos ^{-1}\left(\frac{a}{x}\right) & \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right) & \int \frac{x d x}{\sqrt{a^{2} \pm x^{2}}}= \pm \sqrt{a^{2} \pm x^{2}} \\
\int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\int_{0}^{2 \pi} \cos ^{2} \phi d \phi=\pi & \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right) & \int \frac{x d x}{(a \pm x)^{2}}=\frac{a}{a \pm x}+\ln (a \pm x) \\
\int \sin ^{2} \phi d \phi=\frac{\phi}{2}-\frac{\sin (2 \phi)}{4} & \int \frac{d x}{(a \pm x)^{2}}=\mp \frac{1}{a \pm x} & \int \frac{x d x}{a^{2} \pm x^{2}}= \pm \frac{1}{2} \ln \left(a^{2} \pm x^{2}\right) \\
\int \cos ^{2} \phi d \phi=\frac{\phi}{2}+\frac{\sin (2 \phi)}{4} & \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right) & \int \frac{x d x}{\left(a^{2} \pm x^{2}\right)^{3 / 2}}=\mp \frac{1}{\sqrt{a^{2} \pm x^{2}}} \\
\int \sin ^{3} \theta d \theta=\frac{\cos ^{3} \theta}{3}-\cos \theta & \int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right) & \int \ln (a x) d x=x \ln (a x)-x \\
\int \cos ^{3} \theta d \theta=\sin \theta-\frac{\sin ^{3} \theta}{3} & \int \frac{d x}{\left(a^{2} \pm x^{2}\right)^{3 / 2}}=\frac{x}{a^{2} \sqrt{a^{2} \pm x^{2}}} & \int \frac{\ln (a x)}{x} d x=\frac{1}{2}[\ln (a x)]^{2} \\
\int \cos ^{n} \theta \sin \theta d \theta=-\frac{\cos ^{n+1} \theta}{n+1} & \int \frac{x^{2}}{\sqrt{a^{2}-x^{2}}} d x=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \tan \left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right) \\
\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right) \\
\int \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \pm \frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right| & \int \frac{(x-a \cos \theta) \sin \theta d \theta}{\left(x^{2}+a^{2}-2 a x \cos \theta\right)^{3 / 2}}=\frac{1}{x^{2}} \frac{a-x \cos \theta}{\sqrt{x^{2}+a^{2}-2 a x \cos \theta}}
\end{array}
$$

