
             Physics 487 – Homework #8,9	 ideal = Friday April 16,  deadline = Tuesday April 20 @ midnight

This homework covers two sets of approximation techniques: { week 8: variational principle } and 
{ week 9: the sudden and adiabatic approximations }.   

                                                        Problem 1 : On the nature of Helium, Screening, and Effective Charge 	

Griffiths’ section §7.2 goes through the most CLASSIC application of the variational principle: finding the 
ground state energy of the helium atom including the mutual Coulomb repulsion between the two electrons.  
When we discussed screening in our atomic structure section, we advertised that we would come back to the 
concept of an effective nuclear charge < Z and calculate one when we had more tools.  Well here we are!  

First, here is a summary of Griffiths §7.2.  The Hamiltonian used for the helium atom is : 
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No spin-dependent forces here, just the Coulomb attraction of each electron to the ZHe=2 nucleus and the 
electron-electron repulsion term (which we call Vee for short).  The trial wavefunction used for this classic 
problem is essentially the product of two hydrogen wavefunctions, one for each of helium’s electrons: 
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−Z (r1+r2 )/a0    where a0 is the Bohr radius (see 486 formula sheet).

“Wait”, you remark, “if a0 is the Bohr radius, that trial wavefunction has no variable parameter, I thought we 
were always supposed to include at least one in order to minimize our ground-state energy as much as 
possible?”  You are correct … and there is a variable parameter: it is Z.  “But Z = 2 for Helium!”, you exclaim, 
“I can’t play around with the truth!”  True … but the idea behind this trial wavefunction is to introduce an 
effective Z that will come out less than ZHe = 2 because the effect of the Vee term is to partially screen the 
nuclear charge.  To understand, imagine you are one of the two electrons and that your name is Ivan.  You are 
attracted to the positively-charged ZHe = 2 nucleus, which sits at the center of your probabilistic cloud of 
spherically-symmetric s-shell existence ... but you are repelled by the other electron, named Juan, which is 
probabilistically splattered through space the same way you are.  If you think about Juan using your mastery of 
Gauss’ Law from PHYS 212 (footnote available1), you will realize the following: if you, Ivan, are momentarily 
located a distance rivan away from the nucleus, the only portion of Juan’s probability cloud that affects you is the 
part that is closer to the nucleus than you are, i.e. the part with rjuan < rivan.  Juan is negatively charged, as are 
you, so the electric field you see at your location is due to attraction from the charge +ZHe nucleus & repulsion 
from a portion of Juan’s charge –1 cloud.  Thus, Juan screens part of the +ZHe nuclear charge from you.  Our 
hope is that introducing an effective = screened charge Z as a variational parameter will provide a good 
approximation to the full effect of the Vee term.  

As you see in Griffiths, the best values obtained for the He ground state using the “(hydrogen)2-with-screening” 
trial function are Z = 1.69 (which is less than 2, so yes, the helium nucleus is screened in this model) and 
Egs = –77.5 eV.  This is absurdly close to the experimental value of –79 eV.  You may recall that in a previous 
homework,  you used 1st order perturbation theory to calculate the very same thing – the effect of Vee on the 

1  From Gauss’ Law: the electric field E(r) at a distance r from the center of a spherically symmetric charge distribution is 
Qenc(r)/4πε0r² where Qenc(r) stands for the total charge enclosed within the distance r.  None of the charge outside the radius r affects 
the electric field E(r) at all.  Another way to put this is that a spherically symmetric shell of charge produces zero E-field everywhere 
inside the empty spherical hole in the middle.  That is a fairly AMAZING result from Gauss’ Law, actually … think of all the 
cancellations of all the little field vectors at every point in the empty core that has to occur … symmetry, dude, wow. 



helium ground state energy – and you obtained Egs = –75 eV.  That’s not quite as good, but of course with 
perturbation theory, you can keep going, to 2nd order, 3rd order, etc with enough time/energy/processors.  

(a)  The “(hydrogen)2-with-screening” trial function does NOT do such a good job in obtaining the ground state 
of the H– ion, i.e. a hydrogen nucleus surrounded by two electrons in a closed 1s² shell.  Using the trial 
wavefunction described above, calculate the approximate ground state energy of the H– ion with Vee repulsion 
included.
▶  To shorten this problem, you may use any result from Griffiths §7.2, just give the equation number. 
▶  FYI: It is very common in atomic calculations, such as this one, to need < 1/r > and/or < 1/r² > for 
hydrogenic wavefunctions ψnlm.  The answers are equations 6.55 and 6.56 in Griffiths, and you are free to use 
them, but I do want you to know that there is a very fast way to get the first one.  You use the super-useful Virial 
Theorem, which is true in both QM and CM: <V> = –2<T> for a particle bound in a 1/r potential.  Since you 
know < E > = < T + V > for the hydrogenic wavefunctions (well, it’s on your formula sheet) and V ~ 1/r,  < 1/r > 
is easily obtained!  This is problem 6.12 in Griffiths; the calculation of < 1/r2 > is addressed in problem 6.33 & 
6.32, which is a bit of a project.

(b)  Let’s leave the H– ion alone for a moment and jargon-bust the word ionization.  It means “the freeing of an 
electron from an atomic bound state”.  Remember that to free a bound particle means to elevate its total energy 
from a negative value (its bound-state energy) to ZERO, at which point it is able to reach ∞ = a place free of 
influence from any other forces (V=0) with just enough kinetic energy to be physical (T=0).  
Consider the He+ ion = a helium atom with one electron removed.  As noted above, a He atom has ground state 
energy –79 eV; calculate the ionization energy required to free one electron from a ground-state He atom and 
turn it into a ground-state He+ ion.  
▶  Massive hints: (i) consult the 486 formula sheet, and (ii) this is a very short problem. 

(c)  Back to the H– ion.  Compare the ground state energy of the H– ion that you got in part (a) to the ground 
state energy of the H atom that you got in 486.  We will shortly derive something that you instinctively know or 
suspect already: 

Quantum systems that are in excited states are, in general, unstable as they will spontaneously
decay / transition to available lower-energy states with some characteristic lifetime. 

So: suppose an astronomer tells you that the H– ion is totally stable, and is called “hydride”, and is commonly 
found in the atmosphere of stars.  Does your calculation from (a) support this information?  Why or why not?

FYI:  The solution to the wonky value of the H– energy is in problem 7.18.  Do read the problem, the concept is 
very nice!  But the solution requires many integrals … we’ll skip it.  

                                                                       Problem 2 : An Infinite Well ™ of Changing Size	 Qual Problem

A particle of mass M bounces elastically between two infinite, parallel plane walls separated by a distance D.  
The particle is in its lowest possible energy state.  

(a)  What is the energy of this state?

(b)  The separation between the walls is slowly (i.e., adiabatically) increased to 2D.  

	 (i)  How does the expectation value of the energy change? 

	 (ii) Compare this energy change with the result obtained classically from the mean force exerted on a wall 
	 	 by the bouncing ball? 

(c)  Now assume that the separation between the walls is increased rapidly, with one wall moving at a speed >> 
(E/M)½.  Classically, there is no change in the particle’s energy since the wall is moving faster than the particle 
and cannot be struck by the particle while the wall is moving.



(i) What happens to the expectation value of the energy quantum-mechanically? 

(ii) Compute the probability that the particle is left in its lowest possible energy state.

                                                Problem 3 : A 1D SHO with a Suddenly Applied Electric Field	 Qual Problem

A particle of mass m experiences a simple-harmonic potential in one dimension, so the particle’s Hamiltonian is 
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(a)  You are told that the form of the ground state wavefunction is  ψ0(x) = Ne–α²x²/2.
Calculate the constants N and α WITHOUT using the 1D SHO reference section of our formula sheets. 
(A bit of review of basic things is always good.) 

(b)  What is the energy of the ground state?  Again please derive the result WITHOUT using the 1D SHO 
reference section of our formula sheets. 

(c)  At time t = 0, a constant, uniform electric field of magnitude E is switched on, adding this new term to the 
Hamiltonian:

H′ = e E x

Despite the notation “H0” and “H′” from perturbation theory, you may NOT assume that the perturbing
electric potential is small compared to the harmonic-oscillator potential!  Calculate the exact ground state 
energy of the new hamiltonian H0 + H′.
▶ HINT: Complete the square.

(d)  Assuming that the field is switched on instantaneously, what is the probability that the particle stays in the 
ground state?  

(e)  Obviously one cannot turn on anything “instantaneously”, that is just code for “fast enough that we can use 
the sudden approximation”.  Well, how fast is fast?   Fill in the following sentence with an order-of-magnitude 
quantity (i.e. we don’t care about factors of 2 or 5 or whatever) : 

“In order to use the sudden approximation in part (d), the electric field must be 
switched on over a time interval that is much shorter than _________”.  

▶ HINT: Have a peek at the relevant lecture slide


