
      Physics 487 – Homework #6,7	 due Tuesday Mar 23 @ midnight: 1 file → my.physics Courses Upload

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: our 
master rule for homework and exams is NO WORK = NO POINTS.  However, unless otherwise specified, you 
may use without proof any relation from the formula sheets on our website, from the introductions to this or 
previous homework / discussions, or from non-QM courses.  Here’s a rule of thumb: Write enough so that it 
will MAKE SENSE TO YOU IN 5 YEARS, i.e. so that it provides you with useful future notes. 

For this homework, you may also use wolframalpha.com , wolframcloud.com, or any similar tool
to evaluate your integrals after you set them up in a form that can be directly entered into such tools.

Here is a summary of our perturbation theory results so far.  If you have 

	 • an “unperturbed” Hamiltonian H0 		 that has known eigen-things En
(0){ }  and n(0){ } , 

	 • an actual Hamiltonian H = H0 + H′  	 where H′ is a small correction to H0 (a “perturbation”,  ′H ≪ H0 ),

	 • a series expansion of H’s eigenvalues: 	 En = En
(0) + En

(1) + En
(2) + ...  for each n where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • a series expansion of H’s eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ... ,

and you define the matrix elements Qmn of an operator Q̂  to be written in the unperturbed basis, 

	 	 Qmn ≡ m(0) Q̂ n(0) ,

then as long as 

	 • the Hamiltonian  H = H0 + H′  has no explicit time-dependence and 
	 • the unperturbed eigenstates n(0){ }  are non-degenerate,

the 1st-order and 2nd-order corrections to each unperturbed energy En
(0)  & unperturbed eigenstate n(0)  are: 

	 	 E n
(1) = ′Hnn ≡ n(0) ′H n(0) = the expectation value of the perturbation H′ in the nth unperturbed state.

	 	 E n
(k ) = n(0) ′H n(k−1)     and    n(1) = ′Hmn

En
(0) − Em

(0)
m≠n
∑ m(0)     so En

(2) =
′Hmn

2

En
(0) − Em

(0)
m≠n
∑

If an unperturbed energy you are trying to correct is part of a degenerate subspace of states, you must do a 
partial change of basis before applying these formulae.  This procedure is summarized on the first page of 
Discussion 7. 



                           Problem 1 : δ-Function Bump in the ∞ Square Well ™	 adapted from Griffiths 6.1 & 6.4(a)

Suppose we put a δ-function bump in the center of an infinite square well that runs from x = 0 to x = a.  
The bump adds the following term to the Hamiltonian : 

	 	 ′H =αδ x − a
2

⎛
⎝⎜

⎞
⎠⎟   where α is a constant.  

You can use without proof any results for the unperturbed InfiniteWell™ as you have worked with it so much.

(a)  Find the first-order energy corrections En
(1)  caused by the bump.  Hint: you should find that the bump has a 

very different effect on the energy for even and odd values of n.  

(b)  Now let’s calculate the first-order modifications that the bump produces in the energy eigenstates rather than 
the energy eigenvalues.  The energy eigenstates of the unperturbed ∞ well are n(0) .   First-order perturbation
theory provides a correction n(1)  for each unperturbed state n(0) , given as a sum over contributions from the 
other unperturbed states m(0) .  Calculate the first three non-zero terms in this sum for the ground state (n = 1).  

(c)  Calculate the second-order energy corrections En
(2)  caused by the bump.  You will obtain an infinite sum 

that you can actually do, which is rather wondrous.  The main trick is to use

	 	 1
a2 − b2

= 1
2a

1
a + b

+ 1
a − b

⎛
⎝⎜

⎞
⎠⎟

to rewrite the sum you have to do.  If you write out explicitly (in actual numbers) the first few terms in the 
resulting series, you will see what happens.  It will be very pleasing. ☺︎  
Also, hints from past students: (1) Don’t confuse your summation index “m” with mass, and (2) remember that 
you are summing over m, while n is a fixed value that will appear in the final result for En

(2) .  

Problem 2: A Spin-Spin Interaction in Matrix Form

An interaction between two spin-½ particles is given by 

	 	  V = a + b !σ 1 ⋅
!
σ 2    

where a and b are constants.  To clarify how the matrix-representation of states and operators works when 
two different spins are involved, please read through the solution for Discussion 6 Question 3 before doing this 
problem.  

(a)  Derive the matrix representation for V in the basis SM  where the ordered basis states are 

	 	 e1 , e2 , e3 , e4{ } ≡ 00 SM , 1+1 SM , 10 SM , 1−1 SM{ }
(b)  Derive the matrix representation for V in the basis m1m2  where the ordered basis states are 

	 	 e1 , e2 , e3 , e4{ } ≡ ↑↑
m1m2

, ↑↓
m1m2

, ↓↑
m1m2

, ↓↓ m1m2{ }
Here, the up and down arrows are convenient shorthand for +½ and –½ .  
▶ HINT:  There are two ways to solve this problem: one involving all the Pauli matrices, and 
the other involving { your result from part (a), Clebsch-Gordan coefficients , and the change-of-basis procedure 
discussed / reviewed at the end of Lecture 7B }.  
▶ ALTERNATE HINT:  You can also solve part (b) first, then use { that result + Clebsch-Gordan coefficients + 
change-of-basis procedure discussed / reviewed at the end of Lecture 7B } to solve part (a).  



                                                                                                          Problem 3 : The Stark Effect	 Griffiths 6.36

When an atom is placed in a uniform external electric field Eext, the energy levels are shifted — a phenomenon 
known as the Stark effect.  In this problem we analyze the Stark effect for the n = 1 and n = 2 states of 
hydrogen.  Let the field point in the z direction, so the potential energy of the electron is

	 	 ′HS = eEext z = eEext r cosθ

Treat this as a perturbation on the simple “Bohr” Hamiltonian for the hydrogen atom,  

	 	
 
H0 = − !

2∇2

2m
− e2

4πε0 r
.

Spin is irrelevant to this problem so ignore it.  

(a)  Show that the ground state energy is not affected by this perturbation, to first order.

(b)  The first excited state is 4-fold degenerate: ψ200, ψ211, ψ210, ψ21–1.  Using degenerate perturbation theory, 
determine the first-order corrections to the energy.  Into how many levels does E2 split? 

(c)  What are the “β” wave functions for part (b), i.e. the ones that diagonalize the perturbation ′HS ?  (Griffiths 
calls these “good” wavefunctions.)  Find the expectation value of the electric dipole moment ( 

!pe = −e !r ) in each 
of these “good” states.  Notice that the results are independent of the applied field — evidently hydrogen in its 
first excited state can carry a permanent electric dipole moment. 

▶ HINT: There are a lot of integrals in this problem, but almost all of them are ZERO.  So study each one 
carefully before you do any calculations!  For example, if the φ integral vanishes, there’s not much point in 
doing the r and θ integrals ☺︎.  Partial answer: ′H13 = ′H 31 = −3ea0 Eext  where a0 is the Bohr radius as usual; 
all other elements of ′Hij ≡ β i

(0) ′H β j
(0)  are zero ☺︎.


