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Lecture 19 
Addition of Angular Momentum 

 
 
Addition of Angular Momentum: Spin-1/2 
 
We now turn to the question of the addition of angular momenta. This will apply to both 
spin and orbital angular momenta, or a combination of the two. 
 
Suppose we have two spin-½ particles whose spins are given by the operators S1  and S2 .  
The relevant commutation relations are 
 

 

S1x ,S1y⎡⎣ ⎤⎦ = i!S1z  etc.

S2x ,S2y⎡⎣ ⎤⎦ = i!S2z  etc.

Ŝ1, Ŝ2⎡⎣ ⎤⎦ = 0

 

 
where the last one refers to any components of S1  and S2  and is zero because the degrees 
of freedom of the two particles are completely independent (i.e. S1   doesn’t operate on 
particle 2, and vice versa).  We define the total spin of the two-particle system by 
 

  Ŝ = Ŝ1 + Ŝ2  

The commutation relations for   Ŝ  are 
 

   

Sx ,Sy
⎡
⎣

⎤
⎦ = S1x + S2x ,S1y + S2 y

⎡
⎣

⎤
⎦

= S1x ,S1y
⎡
⎣

⎤
⎦ + S2x ,S2 y

⎡
⎣

⎤
⎦ + 0+ 0

= i! S1z + S2z( ) = i!Sz  etc.

 

 
Therefore Ŝ satisfies the canonical angular momentum commutation relation, so we are 
justified in our definition of Ŝ  as the total angular momentum operator.  For a pair of 
spin-½ particles, there are four possible states for the complete system, which we label 
 

 χ+
1( )χ+

2( ) χ+
1( )χ−

2( ) χ−
1( )χ+

2( ) χ−
1( )χ−

2( )  
 
where the χ ’s denote the two-component spinors, and the upper label is the particle 
number and the lower label corresponds to the projection of the spin operator for that 
particle along some axis being either  ±! 2 . 
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The spinors χ 1,2( )  satisfy 

   

S1
2χ±

1( ) = 1
2

1
2
+1

⎛
⎝⎜

⎞
⎠⎟
!2χ±

1( )

S1zχ±
1( ) = ± !

2
χ±

1( )
 

 
and similarly for χ 2( )  and S2 , but note that S2  does not operate on χ 1( ) and S1  does not 
operate on χ(2).  Let’s check the eigenvalues of Sz  for the four states 
 

  

Szχ±
1( )χ±

2( ) = S1z + S2z( )χ±1( )χ±
2( )

= S1zχ±
1( )⎛

⎝⎜
⎞
⎠⎟
χ±

2( ) + χ±
1( ) S2zχ±

2( )⎛
⎝⎜

⎞
⎠⎟

 

 
Each term in parentheses on the right hand side gives  ±! 2 . Therefore we have 
 

   

Szχ+
1( )χ+

2( ) = !χ+
1( )χ+

2( )

Szχ+
1( )χ−

2( ) = Szχ−
1( )χ+

2( ) = 0

Szχ−
1( )χ−

2( ) = −!Szχ−
1( )χ−

2( )
 

 
There is one state with ms = +1 , one with ms = −1  and two with ms = 0 . These states 
can be grouped together into a triplet and a singlet. To help see how, let’s define the 
raising and lowering operator for the total spin 
 

1 2S S S± ± ±= +  
and recall 

( ) ( )1 1 1S sm s s m m sm± = + -­‐ ± ±h  
so 

   
S 1,2( )−χ+

1,2( ) = !χ−
1,2( )  

 
Now we apply S−  to the ms = 1  state 
 

   

S−χ+
1( )χ+

2( ) = S1−χ+
1( )⎛

⎝⎜
⎞
⎠⎟ χ+

2( ) + χ+
1( ) S2−χ+

2( )⎛
⎝⎜

⎞
⎠⎟

= ! χ−
1( )χ+

2( ) + χ+
1( )χ−

2( )⎛
⎝⎜

⎞
⎠⎟ ms = 0
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We can apply S- again, remembering that 
 

  
S 1,2( )−χ−

1,2( ) = 0  

which gives 
 

   

S− χ−
1( )χ+

2( ) + χ−
1( )χ+

2( )⎛
⎝⎜

⎞
⎠⎟ = S1−χ−

1( )⎛
⎝⎜

⎞
⎠⎟ χ+

2( ) + χ−
1( ) S2−χ+

2( )⎛
⎝⎜

⎞
⎠⎟ + S1−χ+

1( )⎛
⎝⎜

⎞
⎠⎟ χ−

2( ) + χ+
1( ) S2−χ−

2( )⎛
⎝⎜

⎞
⎠⎟

= 0+ !χ−
1( )χ−

2( ) + !χ−
1( )χ−

2( ) + 0⎧
⎨
⎩

⎫
⎬
⎭

= 2!χ−
1( )χ−

2( )                          ms = −1
 

We have stepped down two times from the ms = 1  state. If we apply S−  a third time, we 
get zero, so this must be the lowest rung on the ladder. Thus we have three states which, 
when normalized properly are 

  

SM

χ+
1( )χ+

2( ) → 11

1
2

χ+
1( )χ−

2( ) + χ−
1( )χ+

2( )⎛
⎝⎜

⎞
⎠⎟ → 10

χ−
1( )χ−

2( ) → 1−1

 

 
Since ms = −1, 0,1 for these three, they must have S = 1= S1 + S2  →   they are the triplet 
states. 
 
If you’ve been keeping track, you will have noticed that there is one leftover ms = 0  
state. This state has to go with a total spin of S = 0 = S1 − S2 , the singlet state. This state 
is constructed to be orthogonal to the triplet ms = 0  state and is 
 

 

1
2

χ+
1( )χ−

2( ) − χ−
1( )χ+

2( )⎛
⎝⎜

⎞
⎠⎟

 

 
That’s all fine, but how do we know that this state doesn’t belong with the three triplet 
states above?  Let’s check the eigenvalue of the total spin squared operator S2 . 
 

Ŝ2 = S1 + S2( )2

= S1
2 + S2

2 + 2S1 • S2
S1 • S2 = S1xS2x + S1yS2y + S1zS2z
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We are dealing with eigenstates of Si

2  and Si z , so we want to convert the dot product into 
operators whose action on these states is known. As usual, this means raising and 
lowering operators 

  

S1+S2− = S1x + iSy( ) S2x − iS2 y( )
= S1xS2x + S1yS2 y + iS1yS2x − iS1xS2 y

S1−S2+ = S1x − iSy( ) S2x + iS2 y( )
= S1xS2x + S1yS2 y − iS1yS2x + iS1xS2 y

 

therefore 

  
S1+S2− + S1−S2+ = 2 S1xS2x + S1yS2 y( )  

and 

  2S1• S2 = 2S1zS2z + S1+S2− + S1−S2+  

which gives 

  S
2 = S1

2 + S2
2 + 2S1zS2z + S1+S2− + S1−S2+  

 
Now we can check the two m = 0  states, let’s call them X±  
 

  
X± = 1

2
χ+

1( )χ−
2( ) ± χ−

1( )χ+
2( )⎛

⎝⎜
⎞
⎠⎟

 

We have 

   

S1
2 X± = 1

2
S1

2χ+
1( )⎛

⎝⎜
⎞
⎠⎟ χ−

2( ) ± S1
2χ−

1( )⎛
⎝⎜

⎞
⎠⎟ χ+

2( )⎛
⎝⎜

⎞
⎠⎟

= S1 S1 +1( )!2χ+
1( )χ−

2( ) ± S1 S1 +1( )!2χ−
1( )χ+

2( )

= 3
4
!2 1

2
χ+

1( )χ−
2( ) ± χ−

1( )χ+
2( )⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= 3
4
!2 X±

 

similarly 

   
S2

2 X± = 3
4
!2 X±  

The next term is 

   

2S1zS2z X± = 2 !
2

⎛
⎝⎜

⎞
⎠⎟

− !
2

⎛
⎝⎜

⎞
⎠⎟

X±

= − 1
2
!2 X±
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Finally, the last two terms are 
 

   

S1+S2− + S1−S2+( )X± = 1
2

S1+χ+
1( )S2−χ−

2( ) + S1−χ+
1( )S2+χ−

2( ) ± S1+χ−
1( )S2−χ+

2( ) + S1−χ−
1( )S2+χ+

2( )⎛
⎝⎜

⎞
⎠⎟

= 1
2

0+ !2χ−
1( )χ+

2( ) ± !2χ+
1( )χ−

2( ) ± 0⎛
⎝⎜

⎞
⎠⎟

= !
2

2
χ−

1( )χ+
2( ) ± χ+

1( )χ−
2( )⎛

⎝⎜
⎞
⎠⎟

= ±!2 X±
 

Putting all these things together, we get 
 

 

S2X± = !
2 3
4
+ 3
4
− 1
2
±1⎛

⎝⎜
⎞
⎠⎟ X±

≡ S S +1( )!2X±

 

 
Therefore, the two states, corresponding to the ± sign above, indeed have S = 1, 0 . The 
X+  state corresponds to S = 1, and the X−  state to S = 0 , as claimed. 
 
 
Addition of Angular Momentum: General Spin 
 
What we have done in adding two spin ½’s together  
 

1
2
+ 1
2

→ 1,0  

 
is a special case of the more general problem of addition of angular momentum. In 
general,  

 
!
J =
!
J1 +
!
J2  

 
where 


J1  and 


J2  can describe the orbital angular momentum, the spin, or the total 

angular momentum of a particle. The question then is how to construct the new J 2, Jz  
eigenstates jm  from j1m1  and j2m2 . 
 
The z -components add simply: 

m = m1 +m2  
and j  has possible values of 
 

j = j1 − j2 , j1 − j2 +1,…, j1 + j2 −1, j1 + j2  
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Example 1: Mesons are colorless bound states of quarks and anti-quarks, qq . If a qq  
pair is in a bound state with zero orbital angular momentum, what are the possible values 
of the total spin s ? 

sq =
1
2
, sq =

1
2
, l = 0

⇒ s =

1
2
− 1
2
= 0

1
2
+ 1
2
=1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

Therefore, s = 0  and s =1  are possible. 
 
Example 2: In the quark model, baryons are colorless bound states of three quarks, qqq . 
If three quarks are combined with zero orbital angular momentum, what are the possible 
values for the total spin? 
 
To add three or more angular momenta, combine the first two, then add the third, etc… 

s1 =
1
2

, s2 =
1
2

, s3 =
1
2

, l = 0 ⇒ s12 = 0,1

if  s12 = 0,  then s = s3 =
1
2

if  s12 = 1,  then s =
1− 1

2
= 1

2

1+ 1
2
= 3

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 
And that’s all there is to know about what you get when you add to angular momenta J1  
and J2 . The only remaining question is what are the amplitudes for getting one of the 
final values  

 jm  
when we add 

  
j1m1  and j2m2  

 
Since these are both valid bases, there is a unitary transformation that connects the two 
(in 3-space any two orthogonal bases i,j,k and i’,j’k’ are connected by a rotation) and we 
can write 

  

j1 j2 jm = j1m1 j2m2 j1m1 j2m2 j1 j2 jm
m1,m2

∑  

and 

  

j1m1 j2m2 = j1 j2 jm j1 j2 jm j1m1 j2m2
m1,m2

∑  
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The transformation matrix elements 
 

j1m1 j2m2 j1 j2 jm ≡ j1m1 j2m2 jm  
 

are called the Clebsch-Gordon coefficients. The coefficients are real, so that 
 

j1m1 j2m2 jm = jm j1m1 j2m2  
 
These coefficients are the amplitudes for getting j,m  out of the addition of j1m1  and 
j2m2 . We saw with the addition of two spin-½’s that the z -components of the angular 

momentum add when adding two spins (see pg. 1), so that the Clebsch-Gordon 
coefficients vanish unless m = m1 +m2 .  
 
Furthermore, 

j1m1 j2m2 jm ≠ 0 if and only if j1 − j2 ≤ j ≤ j1 + j2  
For example,  

j1m1 j2m2 = C j j1 j2
mm1m2

j= j1− j2

( j1+ j2 )

∑ j1 j2 j m , with m = m1 +m2  

 
where C j j1 j2

mm1m2
 are Clebsch-Gordan coefficients. Fortunately, we don’t have to work out 

all the coefficients for a given problem. Tables of Clebsch-Gordon coefficients exist in 
many books (Table 4.7 in Griffiths) and can be found at the Particle Data Group’s web 
site (http://pdg.lbl.gov). 
 
 
Example 3: Suppose we have an electron in a hydrogen atom in the state  ℓmℓ = 10 .  
What are the possible values of its total angular momentum, including spin?  In this case, 

we are adding  ℓ = 1  to s = 1 2 , so we go to the 1⊗ 1
2

 table in the chart (see next page). 

We know that  mℓ = 0 , so there are two rows in the table that we need to look at, 
ms = +1 2  and ms = −1 2 . We find 
 

10 1
2
1
2

= 2
3
3
2
1
2

− 1
3
1
2
1
2

10 1
2
−1
2

= 2
3
3
2
−1
2

+ 1
3
1
2
−1
2

 

 
Note that the two possible states in each case are  ℓ+ s  and  ℓ− s , and in each case we 
have  m = mℓ +ms  only. What this tells us is that if we add the states with  mℓ = 0  and 
ms = 1 2  and measure J, we have a probability of 2/3 of measuring J = 3 2  and a 
probability of 1/3 of measuring J = 1 2 . 
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34. Clebsch-Gordan coefficients 010001-1

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
1 =

√
3
4π

cos θ

Y 1
1 = −

√
3
8π

sin θ eiφ

Y 0
2 =

√
5
4π

(3
2

cos2 θ − 1
2

)

Y 1
2 = −

√
15
8π

sin θ cos θ eiφ

Y 2
2 =

1
4

√
15
2π

sin2 θ e2iφ

Y −m
ℓ = (−1)mY m∗

ℓ ⟨j1j2m1m2|j1j2JM⟩
= (−1)J−j1−j2⟨j2j1m2m1|j2j1JM⟩d ℓ

m,0 =
√

4π

2ℓ + 1
Y m

ℓ e−imφ

d j
m′,m = (−1)m−m′

d j
m,m′ = d j

−m,−m′ d 1
0,0 = cos θ d

1/2
1/2,1/2 = cos

θ

2

d
1/2
1/2,−1/2 = − sin

θ

2

d 1
1,1 =

1 + cos θ

2

d 1
1,0 = − sin θ√

2

d 1
1,−1 =

1 − cos θ

2

d
3/2
3/2,3/2 =

1 + cos θ

2
cos

θ

2

d
3/2
3/2,1/2 = −

√
3
1 + cos θ

2
sin

θ

2

d
3/2
3/2,−1/2 =

√
3
1 − cos θ

2
cos

θ

2

d
3/2
3/2,−3/2 = −1 − cos θ

2
sin

θ

2

d
3/2
1/2,1/2 =

3 cos θ − 1
2

cos
θ

2

d
3/2
1/2,−1/2 = −3 cos θ + 1

2
sin

θ

2

d 2
2,2 =

(1 + cos θ

2

)2

d 2
2,1 = −1 + cos θ

2
sin θ

d 2
2,0 =

√
6

4
sin2 θ

d 2
2,−1 = −1− cos θ

2
sin θ

d 2
2,−2 =

(1 − cos θ

2

)2

d 2
1,1 =

1 + cos θ

2
(2 cos θ − 1)

d 2
1,0 = −

√
3
2

sin θ cos θ

d 2
1,−1 =

1 − cos θ

2
(2 cos θ + 1) d 2

0,0 =
(3

2
cos2 θ − 1

2

)

+1

5/2
5/2

+3/2
3/2

+3/2

1/5
4/5

4/5
−1/5

5/2

5/2
−1/2
3/5
2/5

−1
−2

3/2
−1/2
2/5 5/2 3/2

−3/2−3/2
4/5
1/5 −4/5

1/5

−1/2−2 1

−5/2
5/2

−3/5
−1/2
+1/2

+1−1/2 2/5 3/5
−2/5
−1/2

2
+2

+3/2
+3/2

5/2
+5/2 5/2

5/2 3/2 1/2

1/2
−1/3

−1

+1
0

1/6

+1/2

+1/2
−1/2
−3/2

+1/2
2/5

1/15
−8/15

+1/2
1/10

3/10
3/5 5/2 3/2 1/2

−1/2
1/6

−1/3 5/2

5/2
−5/2

1

3/2
−3/2

−3/5
2/5

−3/2

−3/2

3/5
2/5

1/2

−1

−1

0

−1/2
8/15

−1/15
−2/5

−1/2
−3/2

−1/2
3/10
3/5

1/10

+3/2

+3/2
+1/2
−1/2

+3/2
+1/2

+2 +1
+2
+1

0
+1

2/5
3/5

3/2

3/5
−2/5

−1

+1
0

+3/21+1
+3

+1

1

0

3

1/3

+2

2/3

2

3/2
3/2

1/3
2/3

+1/2

0
−1

1/2
+1/2
2/3

−1/3

−1/2
+1/2

1

+1 1
0

1/2
1/2

−1/2

0
0

1/2

−1/2

1

1

−1−1/2

1

1
−1/2
+1/2

+1/2 +1/2
+1/2
−1/2

−1/2
+1/2 −1/2

−1

3/2

2/3 3/2
−3/2

1

1/3

−1/2

−1/2

1/2

1/3
−2/3

+1 +1/2
+1
0

+3/2

2/3 3

3

3

3

3

1−1−2
−3

2/3
1/3

−2
2

1/3
−2/3

−2

0
−1
−2

−1
0

+1

−1

2/5
8/15
1/15

2
−1

−1
−2

−1
0

1/2
−1/6
−1/3

1
−1

1/10
−3/10

3/5

0
2
0

1
0

3/10
−2/5
3/10

0
1/2

−1/2

1/5

1/5
3/5

+1

+1

−1
0 0
−1

+1

1/15
8/15
2/5

2

+2 2
+1

1/2
1/2

1

1/2 2
0

1/6

1/6
2/3

1

1/2

−1/2

0

0 2

2
−2
1−1−1

1
−1
1/2

−1/2

−1
1/2
1/2

0
0

0
−1

1/3

1/3
−1/3

−1/2

+1

−1

−1
0

+1
00

+1−1

2

1

0
0 +1

+1+1

+1
1/3
1/6

−1/2

1
+1
3/5

−3/10
1/10

−1/3
−1
0+1

0

+2

+1

+2

3

+3/2

+1/2 +1
1/4 2

2
−1

1

2
−2
1

−1
1/4

−1/2

1/2
1/2

−1/2 −1/2
+1/2−3/2

−3/2

1/2

1
003/4

+1/2
−1/2 −1/2

2
+1
3/4

3/4
−3/41/4

−1/2
+1/2

−1/4

1

+1/2
−1/2
+1/2

1

+1/2

3/5

0
−1

+1/20

+1/2
3/2

+1/2

+5/2

+2 −1/2
+1/2+2

+1 +1/2

1

2×1/2

3/2×1/2

3/2×12×1

1×1/2

1/2×1/2

1×1

Notation:
J J
M M

...

. . .

.

.

.

.

.

.

m1 m2

m1 m2 Coefficients

−1/5
2

2/7

2/7
−3/7

3

1/2

−1/2
−1
−2

−2
−1

0 4

1/2
1/2

−3
3

1/2
−1/2

−2 1

−4
4

−2

1/5

−27/70

+1/2

7/2
+7/2 7/2

+5/2
3/7
4/7

+2
+1
0

1

+2
+1

+4
1

4

4
+2
3/14

3/14
4/7

+2
1/2

−1/2
0

+2

−1
0

+1
+2

+2
+1
0

−1

3 2

4

1/14

1/14

3/7
3/7

+1
3

1/5
−1/5

3/10

−3/10

+1
2

+2
+1
0

−1
−2

−2
−1
0

+1
+2

3/7

3/7

−1/14
−1/14

+1
1

4 3 2

2/7

2/7

−2/7
1/14

1/14 4

1/14

1/14
3/7
3/7

3

3/10

−3/10

1/5
−1/5

−1
−2

−2
−1
0

0
−1
−2

−1
0

+1

+1
0

−1
−2

−1
2

4

3/14

3/14
4/7

−2 −2 −2

3/7

3/7

−1/14
−1/14

−1
1

1/5
−3/10
3/10

−1

1 0
0

1/70

1/70

8/35
18/35
8/35

0

1/10

−1/10

2/5

−2/5
0
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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Example 4: An electron in a hydrogen atom is in the l,ml = 2,1  state and in the spin 

state s,ms = 1
2
,− 1
2

.  What values of J 2  are possible and what is the probability of 

measuring each? 

m =1− 1
2
= 1
2
, j =

2 + 1
2
= 5
2

2 − 1
2
= 3
2

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 

To find the decomposition, we look at the 2⊗ 1
2

 coefficients in the Clebsh-Gordan table 

(see also Fig. 4.5 on p. 124 of Griffiths).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The 2⊗ 1
2

 indicates we are adding j1 = 2  and j2 =
1
2

, then we use 

m = m1 +m2 =1−
1
2
= 1
2

, and look in the row labeled “+1 − 1
2

”. The table lists 2
5

 for 

5
2
, 1
2

 and 3
5

 for 
3
2
, 1
2

. A  is implied, so that the table reads: 

 

2,1 1
2
, −1
2

= 2
5
5
2
, 1
2

+ 3
5
3
2
, 1
2

 

hence 

P( j = 5
2

) = 2
5

             and              P( j = 3
2

) = 3
5
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Example 5: Find the Clebsch-Gordan decomposition of the s = 0  and s =1 , resulting 

from combining two spin s = 1
2

 states.  

Using the 1
2
⊗ 1
2

 table: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and reading across the rows tells us 
 

1, 1 = 1
2
, 1
2
1
2
, 1
2

1, 0 = 1
2
1
2
, 1
2
1
2
, −1
2

+ 1
2
1
2
, −1
2

1
2
, 1
2

1, −1 = 1
2
, −1
2

1
2
, −1
2

0, 0 = 1
2
1
2
, 1
2
1
2
, −1
2

− 1
2
1
2
, −1
2

1
2
, 1
2

 

 
We see that there is a triplet of s =1  states and a singlet of s = 0  state. We notice that the 
s =1  states are symmetric under interchange of spins and the s = 0  state is 
antisymmetric. More on that later.. 
 
 
 
 


