PHYS 487 - Homework 2

ideal = Wednesday Feb 17, deadline = Friday Feb 19 @ midnight
All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points for poorly written solutions or incorrect reasoning. Answers given without explanation will not be graded: our master rule for homework and exams is NO WORK = NO POINTS. However you may always use without proof any relation from the 486 or 1D-Math formula sheets. Please upload your solution as 1 PDF file using the my.physics course upload tool.

Problem 1 : Space \times Spin

Griffiths 4.55
The electron in a hydrogen atom occupies the combined spin and position state

$$
R_{21}\left(\sqrt{\frac{1}{3}} Y_{1}^{0} \chi_{+}+\sqrt{\frac{2}{3}} Y_{1}^{1} \chi_{-}\right)
$$

where the spinors χ_{+}and χ_{-}denote the $m_{S}=+1 / 2$ and $m_{S}=-1 / 2$ states respectively (i.e. the "spin-up" and "spin-down" states).
(a) If you measured the orbital angular momentum squared $\left(L^{2}\right)$, what values might you get, and what is the probability of each?
(b) Same question for the z component of orbital angular momentum $\left(L_{z}\right)$.
(c) Same question for the spin angular momentum squared $\left(S^{2}\right)$.
(d) Same question for the z component of spin angular momentum $\left(S_{z}\right)$.
(e) Let $\vec{J} \equiv \vec{L}+\vec{S}$ be the total angular momentum of the electron. If you measured J^{2}, what values might you get, and what is the probability of each?
(f) Same question for J_{z}.
(g) If you measured the position of the particle, what is the probability density for finding it at (r, θ, ϕ) ?
(h) If you measured both the z component of the spin and the distance from the origin (note that these are compatible observables), what is the probability density for finding the particle with spin up and at radius r ?

Problem 2 : Three Particles

Griffiths 5.33
Suppose you have three particles, and that three distinct one-particle states $\left(\psi_{a}(x), \psi_{b}(x)\right.$, and $\left.\psi_{c}(x)\right)$ are available. How many different three-particle states can be constructed,
(a) if they are distinguishable particles,
(b) if they are identical bosons,
(c) if they are identical fermions?

NOTE: The particles need not be in different states $-\psi_{a}\left(x_{1}\right) \psi_{a}\left(x_{2}\right) \psi_{a}\left(x_{3}\right)$ would be one possibility, if the particles are distinguishable.

