
Phys 487 Discussion 14 – Scattering Introduction
“Scattering problems” are those where this happens: 

	 1.  A particle comes in from infinity in some known initial state 
	 	 (which is ≈always a plane wave with a given momentum  !

"
k ).

	 2.  It passes through a region around the origin where a non-trivial potential  V (
!r )  exists. 

	 3.  It goes back off to infinity in some modified state.
	 	 (One other possibility is that the particle is captured or destroyed.  This also counts as a scattering
	 	 problem, but it is an inelastic scattering problem.  We will mostly stick to elastic scattering.)

Accompanying these steps is one simplifying, yet eminently reasonable, assumption :

	 ★  The scattering potential  V (
!r )  falls off fast enough with r (distance from the origin) 

	 	 that the incoming and outgoing wavefunctions in the asymptotic r → ∞ region 
	 	 can be treated as those of free particles.  

It is the incoming free particle that distinguishes scattering problems from the bound-state problems that we’ve 
been doing for many months.  Note that you already did scattering problems in 486, they were just in 1D, e.g. 
“An incoming particle of momentum p is incident on a step potential V(x) = … What happens to it?” 
You calculated the reflection and transmission coefficients R and T as ratios of the incoming, reflected, and 
transmitted probability currents … remember all that?  We’re now doing the same sort of thing in 3D.  
The 3D scattering problems we will treat will involve two simplifications: we will treat only 

	 *  scattering by central potentials V(r), and 
	 *  elastic scattering where the particle’s kinetic energy is the same in the initial and final states.

Problem 1 : The Asymptotic Wavefunction

Our starting point is to write the asymptotic form of the incoming + scattered wavefunctions as follows:

	 	
 
ψ (!r ) r→∞⎯ →⎯⎯ ψ in +ψ sc = eikz + f (θ ,φ) e

ikr

r
   with    !k = 2µE .

The given quantities are the reduced mass μ of the [ beam + target ] system and the kinetic energy E of the 
[ beam + target ] in the center-of-mass frame.  By beam, we mean the incoming particle; by target, we mean 
whatever is causing the scattering potential V(r) that our beam will encounter in the vicinity of the origin.  
As in our 1D scattering problems from 486, we are ignoring the overall normalization of the wavefunction as 
we will only be interested in the ratio of the scattered wave ψsc to the incoming wave ψin.  After a few steps of 
derivation, this ratio will give us the scattering cross-section for a given V(r), which is our ultimate goal.

The incoming wave ψin = eikz is very familiar; we instantly recognize it as representing a free particle of 
momentum  

!p = "k ẑ .  Our primary assumption ★ above is that V ≈ 0 if we are far enough away from the 
origin, so the total energy of the incoming particle is just its kinetic energy at infinity: E = ℏ² k² / 2μ.  
Next, we are assuming elastic scattering, so the energy of the scattered particle must also be E = ℏ² k² / 2μ.  
Your task is to show that the unfamiliar spherical wave presented above for the scattered particle,  

	 	 ψ sc = f (θ ,φ) e
ikr

r
, 

does indeed represent a particle of energy E = ℏ² k² / 2μ in the region r → ∞.  GUIDANCE:  Plug ψsc into the 
Schrödinger Equation for the case V = 0 and apply the asymptotic limit r → ∞ to drop one of the terms.  If
you’re worried that the term you’re discarding might have an infinity somewhere in all those angle derivatives, 
identify the part of the Laplacian that is the operator L²/ℏ², and realize that you can write any f(θ,φ) as a linear 



combination of the spherical harmonics.  

Problem 2 : Currents and Cross-Sections 

Now that we have sanity-checked our asymptotic waveform for elastic scattering, let’s put it in a box: 

	 	
 
ψ (!r ) r→∞⎯ →⎯⎯ eikz + f (θ ,φ) e

ikr

r
  =  ψ in +ψ sc

Our ultimate goal is to figure out how to calculate a scattering cross-section from this.  The cross-section is the 
3D version of the R and T coefficients of 1D scattering.  Well, R and T were defined as ratios of probability 
currents.  Let’s follow the same approach to express our asymptotic waveform in terms of real-world 
measurable things, like the electric current carried by the beam, and the number of scattered events per second 
measured by a detector placed at a certain angle.  

(a)  Calculate the probability current 
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for the asymptotic wavefunction in the box above.  You will get cross-terms that involve both the incoming and 
scattered waves.  These will be hard to interpret if they survive … Show that the cross-terms all contain a term 

	 	 e±ikr 1−cosθ( ) .

▶  As r → ∞ these terms all average to zero and can be ignored.  Hurray!

(b)  After dropping the exponential terms in (a), show that, up to terms of order 1 / r², 
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f (θ ,φ) 2

r2
r̂ .

▶  This form is easy to interpret: the first term is the current in the direction of the incoming beam, and the 
second is the current in the direction of the scattered particle (since r̂ , by construction, always points from the 
origin toward the points at angles θ & φ).  Clearly the two terms are  

!
j in  and  

!
j sc .  Hurray again!

(c)  The number of particles scattered per unit time into a small detector of area  d
!
A  located at angles (θ,φ) is 

proportional to 

	 	
 
!
jsc ⋅d

!
A =
!
jsc ⋅ r̂ r

2dΩ( )
where jsc is the current associated with the scattered wave.  The differential cross section dσ/dΩ is this ratio: 

	 	
 

dσ (θ ,φ)
dΩ

=
!
j sc ⋅d
!
A /dΩ!
j in ⋅ ẑ

= # particles scattered into area dA @ (θ ,φ) per unit [ time ⋅solid angle] 
# incident particles per unit [ time ]

Calculate this ratio of currents, and you will have derived the result we are after: 

	 	 dσ
dΩ

= f (θ ,φ) 2 .     


