
Phys 487 Discussion 13 – Spectroscopic Lines
Fermi’s Golden Rule for transition probability / time:
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Einstein A coefficient for spontaneous emission of E1 radiation:

	
 
Ai→ f =

ω if
3 e2 !rfi

2

3πε0"c
3   with 

 
ω if ≡

Ei − Ef

!
,   

 
!rfi ≡ ψ f

!r ψ i

Both of these quantities give you a transition probability / second 
(aka transition rate) for an atom in state i to go to state f .  Since A is the rate of spontaneous transition from a 
state i to a state f, it is precisely related to the natural lifetime τ of state i, i.e. how long it will remain in state i 
before dropping down to state f.  The relationship is : 

	 	 τ = 1
A

  = lifetime of state i = time for the # of atoms in state i to drop by factor 1/e   

To be exact, this is the lifetime of state i under the transition i → f  for a specific final state f.  Usually, for a 
given initial state i there is a very dominant transition i → f that is much more probable (higher rate) than all the 
others, but if there are several final states to which state i can decay, the lifetimes add as follows : 

	 	 τ i =
1
Ai→ ff∑   i.e. the rates Ai→f  add, not the lifetimes, which makes total sense. ☺︎

Problem 1 : Lifetime of hydrogen n                                                        = 2 states	 adapted from Griffiths 9.11 1

It’s time to get some numbers into our work, since we are now know how to calculate the actual stability of an 
electron in an excited atomic state.  Calculate the lifetime, in seconds, for each of the four n = 2 states of 
hydrogen.

▶ HINT 1: First list the four n = 2 states of hydrogen.  How many quantum numbers do you need to specify 
each state?  For a single particle with spin, it’s 5 … but here you can ignore the spin quantum numbers s = ½ and 
ms = ±½ because the E1 radiation rate A doesn’t depend on spin.  (In other words, you will get the same answer 
for different states of ms, so you can ignore ignore ms in your calculation.)  While you’re at it, list the ground 
state quantum numbers too: you will be calculating the transition rates from each of the n = 2 excited states to 
the ground state.  The answers to this first hint are in the footnote for you to check before you continue. 

▶ HINT 2: You will need to evaluate matrix elements of the form 〈ψ100 | x | ψ200 〉,  〈ψ100 | y | ψ211 〉, and so on.  
Remember that x = r sin θ cos φ,  y = r sin θ sin φ,  z = r cos θ.  As often happens when evaluating quantum 
matrix elements, most of the integrals are ZERO, so scan them before you start calculating (as always!).  
The E1 selection rules in the box above are also a useful way to identify some of the transition matrix elements 
that are going to be zero.  In the end, as long as you treat m=±1 as a single case (by using the symbol ±), you 
should have ONLY TWO non-zero integrals to do.  Once you have identified them, check the footnote before 
integrating to make sure you have found the right two. 

1 Q1:  The 4 excited states of hydrogen in the n = 2 shell are |nlm〉 = |200〉, |21+1〉, |210〉, |21–1〉 , and the ground state is |100〉
	 … The only two non-zero matrix elements are 〈 100 | x | 21±1 〉  and  〈 100 | y | 21±1 〉.  
	 … You should get the same lifetime of 1.6 × 10–9 s for three of the excited states, and an infinite lifetime for the fourth state.
	 … The state with the infinite lifetime — i.e. the state that is stable against E1 transitions to the ground state — is |200〉. 
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Figure 14.3 Energywise ordering of the terms for the configuration np np.

Selection Rules for Electron Transitions in LS Coupling
Assuming that only one electron makes a transition at a time, the selection rules
for the transitions between LS coupled states are:

For the electron making the transition
(a) Dl = ±1 (14.15)
(b) Dml = 0, ±1

For the atom as a whole
(a) DS = 0
(b) DL = 0, ±1 (L = 0 ´ L¢ = 0 forbidden)
(c) DML = 0, ±1 (14.16)
(d) DJ = 0, ±1 (J = 0 ´ J ¢ = 0 forbidden)
(e) DMJ = 0, ±1

jj Coupling
In heavy elements the spin-orbit interaction in individual electrons becomes large
and dominates over the residual electrostatic interaction between electrons.
Therefore, the Li and Si vectors of individual electrons couple to give resultant
Ji vectors. These individual Ji vectors then combine to give a resultant J vector
of the whole atom. This is called the jj coupling scheme:
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▶ Check your results at the NIST database, this time in the “Lines” section.  (During our atomic structure 
weeks, we consulted the “Levels” section; now that we are calculating transition rates, we need the other half of 
the database.)  Type in “H 0” for neutral hydrogen, then have a look at the results.  It takes a couple of minutes 
to figure out what you’re looking at, but it is well worth it!  Two things in particular to note:

●  You will find the 1.6 × 10–9 s lifetime you calculated, but it will be upside down : A–1 is listed, not A.  Why?  
From last week’s discussion, and repeated in the introductory summary above, rates add, not lifetimes.  

●  Find the transition for which you calculated an infinite lifetime.  Is there really a completely stable excited 
state of the hydrogen atom?  No … compare the lifetime in the database for the E1-forbidden state to the three 
E1-allowed ones, and have a look at the notation in red to see why the state is not completely stable.

                                                                       Problem 2 : Multiple Decay Routes	 adapted from Griffiths 9.14 2 

An electron in the | nlm 〉 = | 300 〉 state of hydrogen decays by a sequence of E1 transitions to the ground state.

(a)  What decay routes are open to it?  By “decay route” we mean something like this: 

	 	 | 300 〉   →   | nlm 〉   →   | n′l′m′ 〉   →   …   →   | 100 〉 

▶ GUIDANCE: The electron’s energy must drop when spontaneous emission occurs.  In the Bohr model of the 
hydrogen atom, the electron’s energy only depends on the principal quantum number n, and in this question 
you may assume that n changes by at least one unit with each emission.  You calculated numerous corrections to 
the Bohr model (notably the fine structure = spin-orbit + relativistic correction), so you know that different l 
states with the same n don’t have exactly the same energy, but the fine structure correction is small (smaller than 
EBohr by a factor of about α² ≈ 10–4, if you recall), and the decay probability per unit time, A, is proportional to 
the CUBE of ωif = (Ei – Ef)/ℏ, so transitions between fine-structure-separated levels are GREATLY suppressed
compared to those with Δn ≥ 1.  

(b)  If you had a bottle full of atoms in this state, what fraction of them would decay via each route? 

(c)  What is the lifetime of this state? 

▶ HINT: Once it’s made the first transition, it’s no longer in the state | 300 〉, so only the first step in each 
sequence is relevant when computing the lifetime.  When there is more than one decay route open, the rates 
add, not the lifetimes.  

2 Q2: (a) HINTs: The | Δl | = 1 selection rule makes it impossible to go directly from | 300 〉 to | 100 〉, and the hint tells us that we 
	 may assume Δn ≥ 1 for each step, so the decay routes must have EXACTLY ONE INTERMEDIATE STATE, with n = 2 
	 … There are only three allowed intermediate states … Answer: the allowed intermediate states are |200〉 and |21±1〉
	 (b)  The transition rates A = transition probability / second are the same from | 300 〉 to all three intermediate states 
	 ∴ ⅓ of the atoms will decay by each route.
	 (c)  τ = 1.58 × 10–7 s 


