Hind's rules state that, to determine the
(a) (S, L, J) ground state of an atom, we
(DFirst, maximize S.
(2) Then, maximize L,
(3) Finally, for more than half-filled shells, maximize σ; otherwise minimize 5 .
When applying Hund's rules, we reed to take care to only consider valid states. Applying Hand's rules to $L i, B, N, N a$, and K, we get

Element	S	L	J	term symbol
$L_{i}(z=3)$	$1 / 2$	0	$1 / 2$	${ }^{2} S_{1 / 2}$
B	$(z=5)$	$1 / 2$	1	$1 / 2$

Nitrogen is a little tricky.
It has three valence elections in the 2_{p} shell. They have quantum numbers $l_{1}, m_{1}, m_{s_{1}}, l_{2}, m_{l_{2}}, m_{3}, l_{3}, m_{3}, m_{3}$, with $l_{1}=l_{2}=l_{3}=1$.
$(a c o n)$ To maximize S to $3 / 2$, we need that

$$
m_{s_{1}}=m_{s_{2}}=m_{s_{3}}= \pm 1 / 2,
$$

in other words that all three electrons' spins are aligned,
So, in the $\left|\ell_{1} m_{l_{1}} m_{s_{1}} ; l_{2} m_{l_{2} m_{2}} ; l_{3} m_{l_{3}} m_{s_{3}}\right\rangle$ basis, we know that the ground state must satisfy

$$
\left.\| \mathrm{me}_{1} 1 / 2 ; 1 \mathrm{~m}_{2} 1 / 2 ; 1 \mathrm{~m}_{3} 1 / 2\right\rangle .
$$

Since these are electrons, they are fermions and cannot occupy the same state.
Therefore, $m l_{1}, m l_{2}, m l_{3}$ must all be different. Since $m_{e_{i}} \in\{-1,0,1\}$ for $l_{i}=1$, the only possible state satisfying $S=3 / 2$ and $l_{1}=l_{2}=l_{3}=1$ is the $m_{l_{1}}=-1, m_{l_{2}}=0, m_{l_{3}}=+1$ state:

$$
|1-11 / 2 ; 101 / 2 ; 111 / 2\rangle .
$$

This state has $M_{L}=0$, which implies that $L=0$. This means that the only possible J is $J=312$.
(b) The lowest frequency line in the absorption spectrum of N_{a} corresponds to an electron in the 3 s level absorbing a photon and being excited to a $3 p$ state. There are two such states, split by the spin-orbit effect. The spiting is given by

$$
E_{S O} \approx-\vec{\mu}_{s} \cdot \vec{B}
$$

where $\vec{\mu}_{s}=-g_{s} \mu_{B} \vec{S} / \hbar$ is the magnetic moment of the election and \vec{B} is an effective magnetic Semiclassical y, we can think of the \vec{B} field as arising from a charged nucleus rotating around the electron:

$$
\vec{B} \propto q \overrightarrow{\vec{c}} \times \vec{E} . \quad \text { (related to Biot-Savart law) }
$$

The \vec{E} field is that of a point charge

$$
\vec{E} \propto \frac{e}{r^{2}} \hat{r}
$$

So

$$
\begin{aligned}
\vec{B} & \propto \frac{q e}{c r^{2}} \vec{v} \times \hat{r}=\frac{q e}{c m r^{2}}(m \vec{v} \times \hat{r}) \quad(\vec{r}=r \hat{r}) \\
& =\frac{q e}{c m r^{3}}(m \vec{v} \times \vec{r})=\frac{q e}{c m r^{3}} \vec{L}, \quad(\vec{l}=m \vec{v} \times \vec{r})
\end{aligned}
$$

This then tells us that the (bon) spin-orbit splitting can also be written as

$$
\begin{aligned}
E_{s 0} & =-\vec{\mu}_{s} \cdot \vec{B} \\
& =-\left[\frac{g_{s} \mu_{B}}{\hbar} \vec{S}\right] \cdot\left[\frac{q e}{c \frac{1}{m r^{3}}} \vec{L}\right] \\
& =-\frac{g_{s} \mu_{B} q e}{m c^{\hbar}} \frac{1}{r^{3}} \vec{L} \cdot \vec{S} \\
& \propto \vec{L} \cdot \vec{S} \cdot \frac{1}{r^{3}}
\end{aligned}
$$

For the particular states considered, L and s are fixed and non-zerg so the splitting is proportional to $\left\langle\frac{1}{r^{3}}\right\rangle, \quad n=-3$,
(c) For potassium $K(z=19)$, there is one 4 s valence elector in the ground state, The term symbol corresponding to this $(L=0, S=1 / 2, J=1 / 2)$ state is ${ }^{2} S_{1 / 2}$. The lowest single valance election on states are

$$
\begin{array}{lll}
{\left[A_{r}\right] \psi_{s}} & { }^{2} S_{1 / 2} & (S, L, 5)=(1 / 2,0,1 / 2) \\
{\left[A_{r}\right] 4_{p}} & { }^{2} P_{1 / 2} & (1 / 2,1,1 / 2) \\
{ }^{2} P_{3 / 2} & (1 / 2,1,3 / 2)
\end{array}
$$

The energy levels look like
$\left(c_{\text {con }}\right)$
(ψ_{p}) $\quad{ }^{2} p_{312}$ \qquad

$$
\left(M_{J}=-3 / 2,-\frac{1}{2}, \frac{1}{2}, 3 / 2\right)
$$

$$
2 p_{1 / 2}=\left(M_{5}=-1 / 2,1 / 2\right)
$$

$(4 s)^{2} S_{1 / 2} \longrightarrow\left(M_{J}=-1 / 2,1 / 2\right)$
The energy of the electron's magnetic dipole in a magnetic field $\vec{B}=B \hat{i}$ is

$$
\hat{H}^{\prime}=-\mu_{J} \cdot \vec{B}=\frac{e}{2 m} g \vec{F} \cdot \vec{B}=\frac{e}{2 m} g J_{z} B \propto g M_{J,}
$$

where $\vec{\mu}_{J}=-\frac{e}{2 m} g \vec{J}$ is the naguetiz
dipole of the electron in an (S, L, S) atomic state (g is the Landé-g factor, which depends on S, L, σ).

So, larger g and M_{J} correspond to larger changes in energies due to magrefic fields.
The perturbed energy levels look like:
(Hp) ${ }^{2} p_{312}(g=4 / 3)$

$$
2 p_{1 / 2} \quad(g=2 / 3)
$$

$(4 s)^{2} S_{1 / 2}(g=2)$

(exaggerated slopes)
Energy

$B=$ magnetic field
(d) All of the allowed ET (dipole) fransions to the ${ }^{2} S_{1 / 2}$ states are

which were determined by following the selection rales.

