
Phys 487 Discussion 11 – Fermi’s Golden Rule
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                                                                         Problem 1 : Fermi’s Golden Rule for a constant perturbation	

Right at the end of last class, we derived a relation called Fermi’s Golden Rule for a perturbation that 
oscillates sinusoidally with time (typically in the form of EM radiation) and that is on for a very long time.  
As it happens, Fermi’s Golden Rule also applies for another common type of perturbation: a potential that is 
constant with time, it merely TURNS ON at some moment.  An example: a simple Stark or Zeeman effect 
experiment where a field  

!
E(!r )  and/or  

!
B(!r )  is turned on at some time t = 0.  So off we go! 

The simplest time-dependent perturbation is a constant potential V that just “turns on” at some time t = 0 : 

	 	 V(t) = 0 for t < 0         &     V(t) = V = constant for t ≥ 0. 

Important: we are NOT saying that V is constant versus POSITION, only versus TIME.  In all of our 
time-dependent PT work, it is implied that the perturbation labelled “V” or “H′” DOES in general have some !r -dependence.  The position dependence will end up in a transition matrix element Vfi = 〈 ψf | V | ψi 〉 = an 
integral over position that we will have to calculate.  If we ever need to specify a potential that is independent of 
position, we will call it something like “V0” to denote one single scalar value. 

Now suppose that we have a system with a solvable unperturbed Hamiltonian H0 plus the off/on perturbation 
V(t) given above.  What is the transition probability Pi → f  = | cf (t) | ² to first order?  

(a)  Derive the following result :  for i ≠ f,  
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	 You will need the “half-angle formula” 1− cosθ = 2sin2 θ / 2( ) .

▶ Is your first thought that the result is a typo?  It is always my first thought when seeing that expression for a 
simple time-independent perturbation that just turns ON once!  “We saw that sin²(Ω t /2) stuff when we worked 
with sinusoidal perturbations in class, surely it is just a copy/paste error?”  Indeed one would think that such a 
term only appears for sinusoidal perturbations, but no!  Start your calculation from time-dependent PT basics 
(back to the formula sheet!), and observe how that same time-dependent term arises even for our much simpler 
OFF/ON perturbation.  (Actually, look closely: is Pi→f exactly the same or just similar to the sinusoidal case?)

(b)  Prove the following weird but important Dirac delta-function relation : δ (ax) = δ (x)
a

.    

▶  Remember that the defining properties of the Dirac delta are on your 486 formula sheet, consult those to 
derive/prove the above relation, and the one in the next part. 



(c)  Prove that the following is a delta function : lim
a→∞
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(d)  Combining the above, show that the transition rate  
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the time t that the perturbation is ON goes to ∞.   
This is one form of Fermi's Golden Rule.  

(e)  That delta function insists that the energy of the system is conserved in the transition.  Is that reasonable 
when we have a changing potential energy V(t) around that turned on at some moment and caused the 
transition?  Return to expression (a) and consider its dependence on the transition frequency ωfi = ℏ (Ef – Ei).  
The transition frequency is a measure of the energy mismatch between the initial and final states, and so of the 
energy that the system gained or lost as a result of the perturbation.  As you can quickly check with some sort of 
machine, the function sin² x / x² is peaked at x=0 and has a FWHM (full width at half maximum) of about 3.  
Given this info, what range of ωfi values keeps the transition probability Pi→f within a factor of about 2 of its 
maximum value?  Your answer will involve time, t.  Does the range of probable transition frequencies increase 
or decrease with t? 

(f)  The perturbation can never be on forever, i.e. we can never reach the limit t → ∞, so there is always some 
non-zero range of final-state energies Ef that can be reached from an initial-state energy Ei.  And now for a new 
consideration: a transition Ei → Ef can only occur if a state with energy Ef actually exists.  It is customary to 
inject information about the availability of final states into Fermi’s Golden Rule using the quantity 

	 	 n(Ef) = the density of final states.  

This quantity has units of 1/energy because it stands for the number of states per energy-interval:

	 	 n(E) dE ≡ number of states in the interval E − 1
2 dE → E + 1
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The delta function δ(Ef – Ei) in our earlier version of Fermi’s Golden Rule also has units of 1/energy.  To get the 
most familiar form of F.G.R., we replace the one-final-state-only δ-function with the density of states:
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    Fermi’s Golden Rule 


