Phys 487 Discussion 10 - Time-Dependent PT with 2-State Systems

Same formula summary as last week : Consider a system with Hamiltonian $H(t)=H^{(0)}+H^{\prime}(t)$, where $\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}$ are the known eigen-values/states of the "unperturbed" time-independent part $H^{(0)}$. We can express any time-dependent state $|\Psi(t)\rangle$ of this system as a superposition of the unperturbed states $\left|n^{(0)}\right\rangle$ with amplitudes $c_{n}(t)$:

$$
|\Psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle \quad \text { where } \quad i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f_{n}} t} c_{n}(t) \quad \begin{array}{ll}
\bullet & \omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar \\
\bullet H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle
\end{array}
$$

If H^{\prime} is very small compared to H_{0}, we can obtain an approximate solution for the amplitudes $c_{n}(t)$ by expanding them in powers of this smallness \rightarrow this is time-dependent perturbation theory. We find
$\omega_{f i}$ is called the transition frequency for going from initial state i (at time t_{0}) to final state f (at time t); $c_{f}(t)$ is called the transition amplitude for this $i \rightarrow f$ transition. The transition probability that we are usually trying to calculate is, as usual, the magnitude ${ }^{2}$ of the corresponding amplitude :

$$
P_{i \rightarrow f}=\left|c_{f}(t)\right|^{2}
$$

Problem 1: Two-state hydrogen atom in electric field

adapted from Griffiths 9.1^{1}
Systems with only two independent states are excellent sandboxes for playing around with time-dependent potentials since you can readily write down all the matrix elements of $H_{f n}^{\prime}$. Let's take a specific case:
A hydrogen atom is placed in a time-dependent electric field $\vec{E}=E(t) \hat{z}$. Ignore spin throughout.
(a) Calculate all four matrix elements $H_{i j}^{\prime}$ of the perturbation $H^{\prime}=e E z$ between the ground state $(n=1)$ and the quadruply degenerate first excited states $(n=2)$.
(b) Show that the diagonal elements $H_{i i}^{\prime}$ of the perturbation are both zero for all five states.

NOTE: There is only one integral to be done here, if you exploit oddness with respect to z; only one of the $n=2$ states is "accessible" from the ground state by a perturbation of this form, and therefore the system functions as a two-state configuration - assuming transitions to higher excited states can be ignored.
(c) It is very commonly the case that the diagonal elements $H_{i i}^{\prime}$ of a time-dependent perturbation are zero. In this case, the exact differential equations

$$
i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t)
$$

[^0]
... Wait, that was $\mathrm{H}^{\prime}{ }_{21}$, what about $\mathrm{H}^{\prime}{ }_{12}$? You don't have to calculate it explicitly if you remember a property of all Hamiltonians
... The important property starts with $\mathrm{H} \ldots$ Hermitian! $\rightarrow \mathrm{H}^{\prime}{ }_{21}=\mathrm{H}^{\prime}{ }_{12}{ }^{*}$ which here is just H_{12}.
for the two coefficients $c_{a}(t)$ and $c_{b}(t)$ (using Griffiths' notation for two states) reduce to two coupled differential equations without summation signs. Show that the above reduces to these two in the case $H_{i i}^{\prime}=0$:
$$
\dot{c}_{a}=\frac{1}{i \hbar} H_{a b}^{\prime} e^{-i \omega_{0} t} c_{b} \quad \& \quad \dot{c}_{b}=\frac{1}{i \hbar} H_{b a}^{\prime} e^{i \omega_{0} t} c_{a}
$$
with $\omega_{0} \equiv \omega_{b a}=\omega_{b}-\omega_{a}$
(hardly seems worth defining a new variable!)

These are Eq. 9.13 in Griffiths; most of his chapter 9 is based on this pair of equations.
NOTATION CHANGE : We will henceforth stop placing a superscript ${ }^{(0)}$ on the states and energies of the unperturbed system. Reason? We are ALWAYS referring to the states of the unperturbed system in timedependent PT, so there is no reason to flag it with such notation. As we mentioned in class, the goal of timedependent PT is quite different from that of time-independent PT.
$\bullet t$-indep. PT : calculate changes to the eigenenergies \& eigenstates of H_{0} produced by the perturbation H^{\prime}

- t-dep. PT : calculate transition probabilities caused by H^{\prime} between states of the unperturbed system H_{0}

Problem 2: Rabi flopping frequency

adapted from Griffiths 9.7
A rare example of a system that can be solved exactly is the important case of a two-state problem with a sinusoidal oscillating potential. The system is often an atom or a molecule, with two states of particular interest or relevance ; the perturbation usually comes from an incident electromagnetic wave whose frequency ω is tuned to the transition frequency $\omega_{\mathrm{ab}}=\left(E_{\mathrm{a}}-E_{\mathrm{b}}\right) / \hbar$ between the two states.

Here is a simplified expression for the sinusoidal perturbation $V(\vec{r}) \cos (\omega t)$. after it is applied to a system with two states a and b in the case that the driving frequency ω is very close to the transition frequency ω_{ab} : (see $\left.{ }^{2}\right)$

$$
H_{b a}^{\prime}=\frac{V_{b a}}{2} e^{-i \omega t}, \quad H_{a b}^{\prime}=\frac{V_{a b}}{2} e^{i \omega t}, \quad H_{a a}^{\prime}=H_{b b}^{\prime}=0 \quad \text { with } \quad V_{a b} \equiv\left\langle\psi_{a}\right| V\left|\psi_{b}\right\rangle
$$

(a) Solve the two coupled equations you obtained in problem 1 (c) using the initial conditions $c_{a}(0)=1$ and $c_{b}(0)=0$ (i.e. the system starts in state a at time $t=0$). Express your results for $c_{a}(t)$ and $c_{b}(t)$ in terms of

$$
\omega_{r} \equiv \frac{1}{2} \sqrt{\left(\omega-\omega_{a b}\right)^{2}+\left(\left|V_{a b}\right| / \hbar\right)^{2}} \text {, called the Rabi flopping frequency. Answers in footnote }{ }^{3}
$$

(b) Determine the transition probability $P_{a \rightarrow b}(t)$ and show that it never exceeds 1. Confirm that $\left|c_{a}(t)\right|^{2}+\left|c_{b}(t)\right|^{2}=1$ at all times. (What would it mean if that were not true? Ask if you're not sure!)
(c) Check that $P_{a \rightarrow b}(t)$ reduces to the perturbation theory result

$$
P_{a \rightarrow b}(t)=\left|c_{b}(t)\right|^{2} \approx \frac{\left|V_{a b}\right|^{2} \sin ^{2}\left[\left(\omega_{a b}-\omega\right) t / 2\right]}{\left(\omega_{a b}-\omega\right)^{2}}
$$

when the perturbation is "small", and state precisely what small means in this context, as a constraint on V.
(d) At what time does the system first return to its initial state?
${ }^{2}$ Griffiths $\S 9.1 .3$ shows how the approximation $\omega \approx \omega_{0} \equiv \omega_{b a}$ is applied.
${ }^{3}$ Q2 $\left(\mathbf{a)} c_{a}(t)=e^{i\left(\frac{\omega-\omega_{0}}{2}\right) t}\left[\cos \left(\omega_{r} t\right)+i \frac{\left(\omega_{0}-\omega\right)}{2 \omega_{r}} \sin \left(\omega_{r} t\right)\right] \& c_{b}(t)=\frac{V_{b a}}{2 i \hbar \omega_{r}} e^{i\left(\frac{\omega_{0}-\omega}{2}\right) t} \sin \left(\omega_{r} t\right)\right.$
(b) $P_{a \rightarrow b}(t)=\left|c_{b}\right|^{2}=\frac{\left|V_{b a}\right|}{4 \hbar^{2} \omega_{r}^{2}} \sin ^{2}\left(\omega_{r} t\right) \quad$ (d) when $c_{b}(t)$ first $=0$ again \rightarrow at $t=\frac{\pi}{\omega_{r}}$

[^0]: ${ }^{1}$ Q1 (a) Hints: You must calculate $\mathrm{H}^{\prime}{ }_{21}$ for the four different energy eigenstates of hydrogen with principal quantum number $n=2$.
 What are these four $n=2$ states? ... A complete hydrogen wavefunction needs 3 quantum numbers (when spin is ignored)
 $\ldots \mid n l m>\ldots$ the four degenerate $n=2$ states are $|n l m\rangle=|200\rangle,|21+1\rangle,|210\rangle$, and $|21-1\rangle$
 ... How do you calculate $\mathrm{H}^{\prime}{ }_{21}$? Remember that it's called a "transition matrix element", that should help ... the formula is at the top!
 $\ldots \mathrm{H}^{\prime}{ }_{21}=<2 \operatorname{lm}\left|\mathrm{H}^{\prime}\right| 100>=<2 \operatorname{lm}|e E z| 100>\ldots$ You will need the hydrogen wavefunctions, so consult the 486 formula sheet

