
Phys 487 Discussion 9 – Time-Dependent Perturbation Theory 

Consider a system with Hamiltonian � , where �  are the known eigenvalues/
eigenstates of the “unperturbed” part � .  This is the same setup as for time-independent PT except that, now, 
the small perturbation H′(t) changes with time.  It is important to note that the unperturbed part, H(0), does not
depend on time, and so the unperturbed eigenstates |n(0)〉 that we will again use as a basis are again independent
of time.  We can express any time-dependent state �  of this system as a superposition of the unperturbed 
states �  as long as we make the amplitudes time-dependent: 

  where  

If H′ is very small compared to H0, we can obtain an approximate solution for the amplitudes cn(t) by expanding 
them in powers of this smallness → this is time-dependent perturbation theory. We find 

  at 1st order in , given the initial state .

ωfi is called the transition frequency for going from initial state i (at time t0) to final state f (at time t);  
cf(t) is called the transition amplitude for this i → f transition.  The transition probability that we are usually 
trying to calculate is the magnitude² of the corresponding amplitude : 

�

Problem 1 : 1D SHO ™ in a decaying electric field Checkpoints & Comment 1

Consider a one-dimensional harmonic oscillator that is in its ground state, | 0 〉, at t = –∞.  NOTE: Since ALL the 
eigenstates | n 〉 that we’re going to talk about are eigenstates of the unperturbed Hamiltonian, we can suppress 
the (0) subscript without confusion!  The following perturbation is applied between t = –∞ and +∞ : 

�   

where q is the particle’s charge and E is a constant electric field.  What is the probability that the oscillator is in 
the state | n 〉 at t = ∞ ?  If you are disturbed that the sum of your non-zero probabilities is > 1, see the footnote!
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 Q1 : P0→0 = | c0(∞) |² = 1 … P0→1 = | c1(∞) |² = q²E²τ² π / (2mωℏ) exp(–ω²τ²/2) … P0→n = | cn(∞) |² = 0 for n > 1  1

NOTE : Are you disturbed by P0→0 + P0→1 > 1?  P0→0 = 1 would seem to imply that all other transition probabilities must be 0! 
First, it is most excellent that you are disturbed!  To resolve this issue, you must take into account that our formula for the transition 
amplitudes cf(t) is only accurate to first order in the small parameter ε that we placed in front of H′ in our derivation.  In this problem, 
H′ has an “E” in it, and that looks like ε, so just treat E as the parameter of explicit smallness.  The amplitudes we obtained are 

c0(t) = 1 + order(E²)      and      cn>1(t) = E·stuff + order(E²)      
where “order” explicitly shows the size of the uncertainties (the unknown terms) from a formula that is good to 1st-order in E only. 
Square those to see how accurate the corresponding probabilities are.  Keeping only the leading error order (of course!), we get 

P0→0(t) = [ 1 + order(E²) ]² ≈ 1 + order(E²)     and     P0→n>1(t) = [ E·stuff + order(E²) ]² ≈ E²·stuff2 + order(E3) 
Thus      P0→0    is accurate to first order in E (the leading unknown terms are order(E²)) 
while     P0→n>0 is accurate to second order in E (the leading unknown terms are order(E3)) 

The total probability that disturbed you was 1 + stuff·E², which is to be expected since P0→0 is only accurate to order E1. 
MESSAGE : The formula is actually doing what we want 99.999% of the time, which is to find the probabilities of changing state, 
from an initial state i to some different state f.  Our 1st-order amplitude formula gets those i ≠ f probabilities right to 2nd order. 
If you really need the probability Pi→i of staying in the same state to 2nd order as well, you must calculate 1 – Σf≠i Pi→f .



Problem 2 : 1D SHO ™ again

Show that if the perturbation is �  , then � .  

▶ Integration hint: substitute u = ωt.

Problem 3 : Hydrogen Atom with decaying electric field Hints & Checkpoints 2

A hydrogen atom is in the ground state at t = –∞.  An electric field �  is applied until t = +∞.  
Show that the probability that the atom ends up in any of the n = 2 states is 

�   where ω is the transition frequency � .

Does the answer depend on whether or not we incorporate spin in the picture? 
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 Q3  Hints : Ooooh, in this question we have several final states; how many do we have and what are they? 2

… there are 4 final states: | nlm > = | 200 >,  | 21+1 >,  | 210 >,  | 21–1 >.  What are their wavefunctions? 
… the hydrogen wavefunctions ψnlm(r,θ,φ) can be constructed from two separated pieces found on the 486 formula sheet
… remember separation of variables for central-force problems?  
… ψnlm(r,θ,φ) = Rnl(r) Ylm(θ,φ) → go hunting on the 486 formula sheet! 
… should you add the transitn amplitudes then square to get total probability, or square the amplitudes first then add probabilities?  
… you should add probabilities!  If this is not 100% clear, please ask, it is a very important point!
… the matrix elements H′fi will boil down to the form < ψ2lm | z | ψ100 >,  how do you express z in spherical coords? 
… draw a sketch! (or look in the spherical coordinates section of the 486 formula sheet) →  z = r cosθ
… only one matrix element is non-zero, STARE at your integrals looking for zeros before you do any work!
… the only transition with non-zero amplitude is 100 → 210


