## Phys 487 Discussion 9 - Time-Dependent Perturbation Theory

Consider a system with Hamiltonian $H(t)=H^{(0)}+H^{\prime}(t)$, where $\left\{E_{n}^{(0)},\left|n^{(0)}\right\rangle\right\}$ are the known eigenvalues/ eigenstates of the "unperturbed" part $H^{(0)}$. This is the same setup as for time-independent PT except that, now, the small perturbation $H^{\prime}(t)$ changes with time. It is important to note that the unperturbed part, $H^{(0)}$, does not depend on time, and so the unperturbed eigenstates $\left|n^{(0)}\right\rangle$ that we will again use as a basis are again independent of time. We can express any time-dependent state $|\Psi(t)\rangle$ of this system as a superposition of the unperturbed states $\left|n^{(0)}\right\rangle$ as long as we make the amplitudes time-dependent:

$$
\begin{aligned}
& |\Psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i \omega_{n} t}\left|n^{(0)}\right\rangle \text { where } i \hbar \dot{c}_{f}(t)=\sum_{n} H_{f n}^{\prime} e^{i \omega_{f n} t} c_{n}(t) \\
& \begin{array}{l}
\text { - } \omega_{f n} \equiv\left(E_{f}^{(0)}-E_{n}^{(0)}\right) / \hbar \\
\text { - } H_{f n}^{\prime} \equiv\left\langle f^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle
\end{array}
\end{aligned}
$$

If $H^{\prime}$ is very small compared to $H_{0}$, we can obtain an approximate solution for the amplitudes $c_{n}(t)$ by expanding them in powers of this smallness $\rightarrow$ this is time-dependent perturbation theory. We find

$$
c_{f}(t) \approx \delta_{f i}+\frac{1}{i \hbar} \int_{t_{0}}^{t} d t^{\prime} H_{f i}^{\prime}\left(t^{\prime}\right) e^{i \omega_{f i} t^{\prime}} \quad \text { at } \underline{\text { st }} \text { order in } H^{\prime} \ll H_{0} \text {, given the initial state }\left|\Psi\left(t_{0}\right)\right\rangle=\left|i^{(0)}\right\rangle .
$$

$\omega_{f i}$ is called the transition frequency for going from initial state $i$ (at time $t_{0}$ ) to final state $f$ (at time $t$ ); $c_{f}(t)$ is called the transition amplitude for this $i \rightarrow f$ transition. The transition probability that we are usually trying to calculate is the magnitude ${ }^{2}$ of the corresponding amplitude :

$$
P_{i \rightarrow f}=\left|c_{f}(t)\right|^{2}
$$

## Problem 1:1D SHO ${ }^{\text {TM }}$ in a decaying electric field

Checkpoints \& Comment ${ }^{1}$
Consider a one-dimensional harmonic oscillator that is in its ground state, $|0\rangle$, at $t=-\infty$. NOTE: Since ALL the eigenstates $|n\rangle$ that we're going to talk about are eigenstates of the unperturbed Hamiltonian, we can suppress the ${ }^{(0)}$ subscript without confusion! The following perturbation is applied between $t=-\infty$ and $+\infty$ :

$$
H^{\prime}(t)=-q E x e^{-t^{2} / \tau^{2}}
$$

where $q$ is the particle's charge and $E$ is a constant electric field. What is the probability that the oscillator is in the state $|n\rangle$ at $t=\infty$ ? If you are disturbed that the sum of your non-zero probabilities is $>1$, see the footnote!
${ }^{1}$ Q1: $P_{0 \rightarrow 0}=\left|c_{0}(\infty)\right|^{2}=1 \ldots P_{0 \rightarrow 1}=\left|c_{1}(\infty)\right|^{2}=q^{2} E^{2} \tau^{2} \pi /(2 m \omega \hbar) \exp \left(-\omega^{2} \tau^{2} / 2\right) \ldots P_{0 \rightarrow \mathrm{n}}=\left|c_{\mathrm{n}}(\infty)\right|^{2}=0$ for $n>1$
NOTE : Are you disturbed by $P_{0 \rightarrow 0}+P_{0 \rightarrow 1}>1$ ? $P_{0 \rightarrow 0}=1$ would seem to imply that all other transition probabilities must be 0 ! First, it is most excellent that you are disturbed! To resolve this issue, you must take into account that our formula for the transition amplitudes $c_{f}(t)$ is only accurate to first order in the small parameter $\varepsilon$ that we placed in front of $H^{\prime}$ in our derivation. In this problem, $H^{\prime}$ has an " $E$ " in it, and that looks like $\varepsilon$, so just treat $E$ as the parameter of explicit smallness. The amplitudes we obtained are

$$
c_{0}(t)=1+\operatorname{order}\left(E^{2}\right) \quad \text { and } \quad c_{n>1}(t)=E \cdot \text { stuff }+\operatorname{order}\left(E^{2}\right)
$$

where "order" explicitly shows the size of the uncertainties (the unknown terms) from a formula that is good to $1^{\text {st }}$-order in $E$ only. Square those to see how accurate the corresponding probabilities are. Keeping only the leading error order (of course!), we get $P_{0 \rightarrow 0}(t)=\left[1+\operatorname{order}\left(E^{2}\right)\right]^{2} \approx 1+\operatorname{order}\left(E^{2}\right) \quad$ and $\quad P_{0 \rightarrow n>1}(t)=\left[E \cdot \operatorname{stuff}+\operatorname{order}\left(E^{2}\right)\right]^{2} \approx E^{2} \cdot \operatorname{stuff}^{2}+\operatorname{order}\left(E^{3}\right)$ Thus $\quad P_{0 \rightarrow 0}$ is accurate to first order in $E$ (the leading unknown terms are order $\left(E^{2}\right)$ ) while $\quad P_{0 \rightarrow n>0}$ is accurate to second order in $E$ (the leading unknown terms are order $\left(E^{3}\right)$ )
The total probability that disturbed you was $1+\operatorname{stuff} \cdot E^{2}$, which is to be expected since $P_{0 \rightarrow 0}$ is only accurate to order $E^{1}$. MESSAGE : The formula is actually doing what we want $99.999 \%$ of the time, which is to find the probabilities of changing state,
 If you really need the probability $P_{i \rightarrow i}$ of staying in the same state to $2^{\text {nd }}$ order as well, you must calculate $1-\Sigma_{\text {fғi }} P_{i \rightarrow f}$.

## Problem 2 : 1D SHO ${ }^{\text {TM }}$ again

Show that if the perturbation is $H^{\prime}(t)=-\frac{q E x}{1+(t / \tau)^{2}}$, then $P_{0 \rightarrow 1} \approx \frac{q^{2} E^{2} \pi^{2} \tau^{2}}{2 m \omega \hbar} e^{-2 \omega \tau}$.

- Integration hint: substitute $u=\omega t$.


## Problem 3 : Hydrogen Atom with decaying electric field

Hints \& Checkpoints ${ }^{2}$
A hydrogen atom is in the ground state at $t=-\infty$. An electric field $\vec{E}(t)=\hat{z} E e^{-t^{2} / \tau^{2}}$ is applied until $t=+\infty$. Show that the probability that the atom ends up in any of the $n=2$ states is

$$
P_{1 \rightarrow 2} \approx\left(\frac{q E}{\hbar}\right)^{2}\left(\frac{2^{15} a_{0}^{2}}{3^{10}}\right) \pi \tau^{2} e^{-\omega^{2} \tau^{2} / 2} \text { where } \omega \text { is the transition frequency } \omega \equiv \frac{E_{2 l m}-E_{100}}{\hbar} .
$$

Does the answer depend on whether or not we incorporate spin in the picture?

[^0]$\ldots$ there are 4 final states: $|n l m\rangle=|200\rangle,|21+1\rangle,|210\rangle,|21-1\rangle$. What are their wavefunctions?
$\ldots$ the hydrogen wavefunctions $\psi_{n l m}(r, \theta, \phi)$ can be constructed from two separated pieces found on the 486 formula sheet
... remember separation of variables for central-force problems?
$\ldots \psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi) \rightarrow$ go hunting on the 486 formula sheet!
$\ldots$ should you add the transitn amplitudes then square to get total probability, or square the amplitudes first then add probabilities?
... you should add probabilities! If this is not $100 \%$ clear, please ask, it is a very important point!
$\ldots$ the matrix elements $H_{f i}^{\prime}$ will boil down to the form $\left\langle\psi_{2 l m}\right| z\left|\psi_{100}\right\rangle$, how do you express $z$ in spherical coords?
... draw a sketch! (or look in the spherical coordinates section of the 486 formula sheet) $\rightarrow z=r \cos \theta$
... only one matrix element is non-zero, STARE at your integrals looking for zeros before you do any work!
... the only transition with non-zero amplitude is $100 \rightarrow 210$


[^0]:    ${ }^{2}$ Q3 Hints: Ooooh, in this question we have several final states; how many do we have and what are they?

