Phys 487 Discussion 8 – The Variational Principle

New subject! The **variational principle** is a technique for finding the ground state energy¹, E_{gs} , of a system when the Hamiltonian's eigenstates are not known and not easy to find. It consists of one theorem plus one technique:

• The Theorem : $E_{gs} \leq \langle \hat{H} \rangle = \langle \psi | \hat{H} | \psi \rangle$.

In words: the ground state energy is the <u>lowest possible expectation value</u> of the Hamiltonian. This is very intuitive, and becomes completely obvious once we work through the small proof.

• The Technique : Evaluate the expectation value $\langle \psi | \hat{H} | \psi \rangle$ using a <u>trial wavefunction</u> ψ = a function with one or more <u>parameters that you can vary</u>, then <u>minimize</u> $\langle H \rangle$ with respect to those parameters.

The result is an upper limit on the ground-state energy. It can be a very good estimate of the ground-state energy if your trial wavefunction can acquire a shape very close to the actual ground-state wavefunction. Such **variational techniques** are very common in numerical analysis.

For the integrals you must do today, feel free to use <u>wolframalpha</u>, but also recall that the <u>486 formula sheet</u> has useful math results like <u>Gaussian integrals</u>.

Problem 1 : Linear Potential

Qual Problem²

A particle of mass *m* moves in the 1D region x > 0 and experiences the following potential energy :

 $V(x) = \begin{cases} \infty & \text{for } x \le 0 \\ Fx & \text{for } x > 0 \end{cases} \text{ where } F \text{ is a real, positive constant.}$

Use a variational method to obtain an estimate for the ground state energy.

TIPS for selecting a trial wavefunction:

- Think about the wavefunction's <u>asymptotic behaviour</u>, i.e. how it must behave / what values it must reach in the limits $x \to \infty$ and $x \to 0$.
- As we will discuss in class, for systems that extend to ±∞, the easiest trial wavefunctions to work with are almost always Gaussians or falling exponentials, i.e. exp(-αx²) and exp(∓αx). Either form will give you a good answer here, but one will be better than the other. And don't forget ...
- The forms in the previous bullet are common choices for taking care of x → +∞ behaviour, but don't forget about the OTHER boundary condition, which in this case is not x → -∞ but x → 0! You must make a small but significant modification to the previous forms before you can use them as good trial wavefunctions for this problem!

¹ Jargon check: The **ground state energy** of a system \equiv the lowest eigenvalue of the system's Hamiltonian.

Also, we will shortly learn that you can *occasionally* use the variational principle to estimate the energy of the 1st excited state as well as the ground state (e.g. problem 3).

² Q1 : About the simplest <u>trial wavefunction</u> you can use is $\psi(x) = A x e^{-\alpha x}$, let's go with that (it's 0 at x=0 and it's square-integrable)

^{...} The next step is to normalize your trial wavefunction ... for our ψ , we get $A = 2 \alpha^{3/2}$

^{...} The next step is to calculate the expectation value of the Hamiltonian for the trial wavefunction ... i.e. $\langle -\hbar^2/2m d^2/dx^2 + Fx \rangle$

^{...} For our ψ , $\langle H \rangle = \alpha^2 \hbar^2 / 2m + 3F / 2\alpha$

^{...} The next step is to minimize $\langle H \rangle$... with respect to any free parameters

^{...} Our only free parameter is α ... Minimization gives $\langle H \rangle_{min} = (3/2)^{5/3} (\hbar^2 F^2/m)^{1/3}$, which is our estimate for E_{gs} .

Of course you will get another result if you use a different trial wavefunction. If your result is lower, you made a better guess! :-)

Problem 2 : δ Function Potential

Find the best bound on the ground-state energy E_{gs} for the δ -function potential $V(x) = -\alpha \delta(x)$ using as your trial wavefunction a <u>triangular</u> form that peaks at the origin and falls off linearly on either side to $x = \pm a/2$. (So the total width of the triangle is a ... which is your adjustable parameter, and <u>not</u> equal to the Greek α in front of the δ -function potential, which is a given value. a and α look the same in this font, argh, but not usually when handwritten).

Problem 3 : SHO, 1st excited state

There is a corollary to the variational principle that can be used to estimate the 1st-excited energy of *some* systems. Here is a practical version of that corollary (we will make it more general in class):

If the system's potential energy V(x) is an <u>even function</u> of x and we use trial wavefunctions $\psi(x)$ that are <u>odd functions</u> of x, then the variational principle gives us an upper bound on the energy of the 1st-excited state :

$$E_{1 \text{st excited}} \leq \langle \psi_{\text{odd}} | \hat{H}_{\text{even}} | \psi_{\text{odd}} \rangle$$

This is not so intuitive as the main variational principle, but the proof will make it obvious too, you'll see. :)

Using this technique, find the best bound on the first excited state of the 1D harmonic oscillator that you can obtain from the following trial wavefunction :

 $\psi(x) = A x e^{-bx^2}$

Griffiths 7.4(b) 4