Discussion 6 solutions
by Eli: Cherthow
(1)
(a)

$$
\begin{aligned}
& H=V_{0}\left(\begin{array}{rrr}
1-\varepsilon & 1 & \varepsilon \\
& \varepsilon & 2
\end{array}\right)=H_{0}+H^{\prime} \\
& H_{0}=V_{0}\left(\begin{array}{ll}
1 & \\
& \\
& \\
&
\end{array}\right) \Rightarrow\left|e^{(0)}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left|e_{2}^{(0)}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { are degenerate }
\end{aligned}
$$ eigenvectors with energy $E_{1}^{(0)}=E_{2}^{(0)}=V_{0}$

The third eigenvector of H_{0} is $\left|e_{3}^{(0)}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ with energy eigenvalue $E_{3}^{(0)}=2 V_{0}$.

$$
H^{\prime}=v_{0}\left(\begin{array}{ccc}
-\varepsilon & 0 & 0 \\
0 & 0 & \varepsilon \\
0 & \varepsilon & 0
\end{array}\right)
$$

(b) The eigenvalues of H are given by

$$
\begin{aligned}
& \operatorname{det}(H-I E)=0 \\
& \operatorname{det}\left[v_{0}\left(\begin{array}{c}
1-\varepsilon-E \\
\varepsilon_{2} \\
\left.\begin{array}{l}
1-E \\
\varepsilon
\end{array}\right)
\end{array}\right]=0\right. \\
& v_{0}^{3}(1-\varepsilon-E) \underbrace{\left.(1-E)(2-E)-\varepsilon^{2}\right]}_{\left[E^{2}-3 E+2-\varepsilon^{2}\right]}=0
\end{aligned}
$$

There are three solutions for E :

$$
\begin{aligned}
& E_{1}=(1-\varepsilon) v_{0} \\
& E_{2,3}=\frac{\left.37 \sqrt{9-4\left(2-\varepsilon^{2}\right.}\right)}{2} V_{0}=\frac{1}{2}\left(3+\sqrt{1+4 \varepsilon^{2}}\right) V_{0}
\end{aligned}
$$

Icon For small $\varepsilon \ll l$, we can expand the (bon) square root as follows:

$$
\begin{aligned}
\sqrt{1+4 \varepsilon^{2}} & =1+4\left(\frac{1}{2} \varepsilon^{2}\right)+\theta\left(\varepsilon^{4}\right) \\
& =1+2 \varepsilon^{2}+\theta\left(\varepsilon^{4}\right) .
\end{aligned}
$$

To second-order in ε, the energy eigenvalues are therefore

$$
\begin{aligned}
E_{1} & =(1-\varepsilon) V_{0} \\
E_{2} & =\frac{1}{2}\left(3-\sqrt{1+4 \varepsilon^{2}}\right) V_{0}=\frac{v_{0}}{2}\left(3-\left(1+2 \varepsilon^{2}+\theta\left(\varepsilon^{4}\right)\right)\right) \\
& =\frac{1}{2}\left(2-2 \varepsilon^{2}+\theta\left(\varepsilon^{4}\right)\right) V_{0} \\
& =\left(1-\varepsilon^{2}\right) V_{0}+\theta\left(\varepsilon^{4}\right) \\
E_{3} & =\frac{1}{2}\left(3+\left(1+2 \varepsilon^{2}+\theta\left(\varepsilon^{4}\right)\right)\right) V_{0} \\
& =\left(2+\varepsilon^{2}\right) V_{0}+\theta\left(\varepsilon^{4}\right) .
\end{aligned}
$$

(c) First-order nondegenerate perturbation theory tells us that, to order ε, the nondegenerate state $\left|e_{3}^{(0)}\right\rangle$ is energy gets shifted by

$$
\begin{aligned}
E_{3}^{(1)} & =\left\langle e_{3}^{(0)}\right| H^{1}\left|e_{3}^{(0)}\right\rangle \\
& =(0,0,1) v_{0}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & \varepsilon \\
0 & \varepsilon & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =0
\end{aligned}
$$

(con which means that the 3rd eigenstates total ($C_{\text {con }}$) corrected energy is

$$
\begin{aligned}
E_{3} & =E_{3}^{(0)}+E_{3}^{(1)}+\theta\left(\varepsilon^{2}\right) \\
& =2 V_{0}+\theta\left(\varepsilon^{2}\right) .
\end{aligned}
$$

The second -order correction to the energy eigenvalue of state $\left|e_{3}^{(0)}\right\rangle$ is

$$
\begin{aligned}
E_{3}^{(2)} & =\left\langle e_{3}^{(0)}\right| H^{\prime}\left|e_{3}^{(1)}\right\rangle=\sum_{m \neq n_{3}} \frac{\left.K e_{m}^{(0)}\left|H^{\prime}\right| e_{3}^{(0)}\right\rangle\left.\right|^{2}}{E_{m}^{(0)}-E_{3}^{(0)}} \\
& =\frac{\left.\left|\left\langle e_{1}^{(0)}\right| H^{\prime}\right| e_{3}^{(0)}\right\rangle\left.\right|^{2}}{E_{3}^{(0)}-E_{1}^{(0)}}+\frac{\left.\left|\left\langle e_{2}^{(0)}\right| H^{\prime}\right| e_{3}^{(0)}\right\rangle\left.\right|^{2}}{E_{3}^{(0)}-E_{2}^{(0)}} \\
& =\frac{\left|(1,0,0) v_{0}\binom{-\varepsilon}{\varepsilon}\binom{0}{i}\right|^{2}}{2 v_{0}-v_{0}}+\frac{\left|(0,1,0) v_{0}(-\varepsilon \varepsilon)\binom{0}{i}\right|^{2}}{2 v_{0}-v_{0}} \\
& =0+V_{0} \varepsilon^{2}=V_{6} \varepsilon^{2} .
\end{aligned}
$$

To second-order, the Ord eigenstate's energy is

$$
\begin{aligned}
E_{3} & =E_{3}^{(0)}+E_{3}^{(1)}+E_{3}^{(2)}+\theta\left(\varepsilon^{3}\right) \\
& =2 v_{0}+v_{0} \varepsilon^{2}=\left(2+\varepsilon^{2}\right) v_{0}+\theta\left(\varepsilon^{3}\right)
\end{aligned}
$$

which agrees with the result from part (b).
(con
(d) Suppose we ty applying the non-degenerate perturbation theory formulae to the two degenerate states $\left|e_{1}^{(0)}\right\rangle,\left|e_{2}^{(0)}\right\rangle$. What happens?
Their energy corrections are

$$
\begin{aligned}
E_{1}^{(1)} & \left.=\left\langle e_{1}^{(0)}\right| H^{\prime} \mid e_{1}^{(0)}\right) \\
& =(1,0,0) r_{0}\binom{-\varepsilon}{\varepsilon}\binom{1}{0}=-\varepsilon V_{0} \\
E_{2}^{(1)} & =\left\langle e_{2}^{(0)}\right| H^{\prime}\left|e_{2}^{(0)}\right\rangle \\
& =(0,1,0) V_{0}\binom{-\varepsilon}{\varepsilon}\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=0 .
\end{aligned}
$$

Their total corrected energies are then

$$
\begin{aligned}
E_{1} & =E_{1}^{(0)}+E_{1}^{(1)}+\theta\left(\varepsilon^{2}\right) \\
& =v_{0}-\varepsilon v_{0}+\theta\left(\varepsilon^{2}\right)=(1-\varepsilon) v_{0}+\theta\left(\varepsilon^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E_{2} & =E_{2}^{(0)}+E_{2}^{(1)}+\theta\left(\varepsilon^{2}\right) \\
& =V_{0}+\theta+\theta\left(\varepsilon_{2}^{2}\right)=V_{0}+\theta\left(\varepsilon^{2}\right) .
\end{aligned}
$$

These both happen to agree with the exact result from part (b).
(con) The main thing to realize is that,
(e) in the degenerate subspace of $\left.\mid e_{1}^{(0)}\right),\left|e_{2}^{(0)}\right\rangle$, the perturbation matrix is

$$
\left\langle e_{i}^{\left(e_{i} \mid\right.}\right| H^{\prime}\left|e_{j}^{(0)}\right\rangle=\left(\begin{array}{cc}
\left.\left\langle e_{1}^{(0)}\right|\left|H^{\prime}\right| e_{e}^{(0)}\right\rangle & \left.\left\langle e_{1}^{(0)}\right| H^{\prime} \mid e_{2}^{0}\right) \\
\left.e_{2}^{(0)}\left|H^{\prime}\right| e_{1}^{(0)}\right\rangle & \left\langle e_{2}^{(0)}\right| H^{\prime} \mid e_{2}^{\left(e^{(}\right)}
\end{array}\right)=\left(\begin{array}{cc}
-\varepsilon & 0 \\
0 & 0
\end{array}\right),
$$

which is diagonal.
The Ist-order non-degenerate PT formula worked in this case because we worked with a "good basis", one that already diagonalized the above matrix. In a sense, it was as if we already did the first step of degenerate PT without realizing it. If the $\left\langle e_{\alpha}^{(0)}\right| \mu^{\prime}\left|e_{\beta}^{(0)}\right\rangle$ matrix was not diagonal for a set of degenerate states $\left\{\left|e_{\alpha}^{(0)}\right\rangle\right.$, then we would have needed to diagonalize the matrix and find its eigenvectors to find the "good basis."
(2)
(a)

$$
\begin{aligned}
& H=V_{0}\left(\begin{array}{ccc}
1-\varepsilon & 2 & \varepsilon \\
\varepsilon & 2
\end{array}\right)=H_{0}+H^{\prime} \\
& H_{0}=V_{0}\left(\begin{array}{lll}
1 & & \\
& 2 & \\
& & 2
\end{array}\right) \lessgtr \frac{\text { eigenvectors and eigenvalues of } H_{0}}{\left.\mid e_{1}^{(0)}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), E_{1}=v_{0}} \\
& \left|e_{0}^{(0)}\right\rangle=\binom{0}{0}, E_{2}=2 v_{0} \\
& \left|e_{3}^{(0)}\right\rangle=\binom{0}{1}, E_{3}=2 v_{0}
\end{aligned}
$$

(b) The exact eigenvalues ave given by

$$
\operatorname{det}(H-I E)=0=v_{0}^{3}(1-\varepsilon-E)(\underbrace{(2-E)^{2}-\varepsilon^{2}}_{E^{2}-2 E+4-\varepsilon^{2}})
$$

The three solutions for E are:

$$
E_{1}=(1-\varepsilon) V_{0}, E_{2}=(2-\varepsilon) v_{0}, E_{3}=(2+\varepsilon) v_{0} \text {. }
$$

These are already linear in ε, so there is no need to apply an approximation. These are exact energies.

20 cm
(c) Naively applying nor-degenerate PT gives us

$$
\begin{aligned}
\tilde{E}_{1}^{(1)} & =\left\langle e_{1}^{(0)}\right| H^{\prime}\left|e_{1}^{(0)}\right\rangle \\
& =(1,0,0) V_{0}\binom{-\varepsilon}{\varepsilon}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& =-\varepsilon V_{0} \\
\tilde{E}_{2}^{(1)} & \left.=\left\langle e_{2}^{(0)} / H^{\prime}\right| e_{2}^{(0)}\right) \\
& =(0,1,0) V_{0}\binom{-\varepsilon}{\varepsilon}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& =0 \\
\tilde{E}_{3}^{(1)} & =\left\langle e_{3}^{(0)}\right| H^{\prime}\left|e_{3}^{(0)}\right\rangle=(0,0,1) V_{0}\binom{\varepsilon}{\varepsilon}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =0 .
\end{aligned}
$$

Note that $\tilde{E}_{2}^{(1)}$ and $\tilde{E}_{3}^{(1)}$ are wrong, they do not match the results of (b).
(d) $\left|e_{2}^{(0)}\right\rangle,\left|e_{3}^{(0)}\right\rangle$ do not diagonalize $H_{i j}^{\prime}=\left\langle e_{i}^{(0)}\right| H^{\prime}\left|e_{j}^{(0)}\right\rangle$. The first step of degenerate PT requires us to find a basis that diagonalizes H_{i}^{\prime}.

Icon The relevant mathis that we reed to (e) compute and diagonalize for deg. PT is

$$
\begin{aligned}
\left(\begin{array}{ll}
H_{22}^{\prime} & H_{23}^{\prime} \\
H_{32}^{\prime} & H_{33}^{\prime}
\end{array}\right) & =\left(\begin{array}{ll}
\left\langle e_{2}^{(0)} \mid H^{\prime} e_{2}^{(0)}\right\rangle & \left\langle e_{2}^{(0)}\right| H^{\prime}\left|e_{3}^{(0)}\right\rangle \\
\left\langle e_{3}^{(0)}\right| H^{\prime}\left|e_{2}^{(0)}\right\rangle & \left\langle e_{3}^{(0)} \mid H^{\prime} e_{3}^{(0)}\right\rangle
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \varepsilon \\
\varepsilon & 0
\end{array}\right)
\end{aligned}
$$

Its eigenvectors are

$$
\begin{aligned}
\left|e_{2}^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|e_{2}^{(0)}\right\rangle-\left|e_{3}^{(0)}\right\rangle\right) \\
& \left.=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad \quad \quad \text { eigenvalue }-\varepsilon\right) \\
\left|e_{3}^{\prime}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|e_{2}^{(0)}\right\rangle+\left|e_{3}^{(0)}\right\rangle\right) \\
& \left.=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \quad \text { Ceigenvalue }+\varepsilon\right)
\end{aligned}
$$

The first-order corrections to the degenerate energy levels $E_{2}^{(0)}=E_{3}^{(0)}=2 V_{0}$ are then

$$
E_{2}^{(1)}=-\varepsilon V_{0}, E_{3}^{(1)}=+\varepsilon V_{0} .
$$

This agrees with the exact result of part (b).

