Phys 487 Discussion 7 – Degenerate Perturbation Theory

- The Old Stuff : Formulae for perturbative corrections to non-degenerate states are on the last page.
- The New Stuff : The Procedure for dealing with degenerate states is as follows :

Perturbation theory always starts with an "unperturbed" Hamiltonian H_0 whose eigenstates $\left\{ \left| n^{(0)} \right\rangle \text{ or } \psi_n^{(0)} \right\}$ and eigenvalues $\left\{ E_n^{(0)} \right\}$ can be obtained exactly. A small perturbing Hamiltonian $H' \ll H_0$ is then added to H_0 to produce the full Hamiltonian $H = H_0 + \varepsilon H'$. This is the Hamiltonian whose eigen-things we would like to obtain. I have attached a dimensionless scale factor $\varepsilon \ll 1$ to H' so that I can easily keep track of orders of smallness. (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)

Suppose that a subset of the unperturbed eigen-energies $\{E_n^{(0)}\}\$ are **degenerate**, i.e. have the same value E_α . Let the quantum numbers of these degenerate eigenstates be $\{\alpha 1, \alpha 2, \alpha 3, ..., \alpha n\}$. If we write H_0 in matrix form using as basis the unperturbed eigenstates $\{|n^{(0)}\rangle\}$, we get the <u>diagonal</u> matrix $(\mathbf{H}_0)_{mn} \equiv \langle m^{(0)} | \hat{H}_0 | n^{(0)} \rangle$:

 $\mathbf{H}_{0} = \begin{pmatrix} E_{1}^{(0)} & & & \\ & E_{2}^{(0)} & & & \\ & & E_{\alpha} & & \\ & & & E_{\alpha} & & \\ & & & & E_{\alpha} & & \\ & & & & E_{5}^{(0)} & & \\ & & & & & \dots \end{pmatrix}$ where all the empty elements are 0.

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily. The degenerate states $\left\{ \left| \alpha_{1}^{(0)} \right\rangle, ..., \left| \alpha_{n}^{(0)} \right\rangle \right\}$, which are just $\left\{ \left| 3^{(0)} \right\rangle, \left| 4^{(0)} \right\rangle \right\}$ here, form a **degenerate subspace** where any linear combination of the $|\alpha_{i}\rangle$'s is *also* an eigenstate of H_{0} with the same eigenvalue E_{α} .

> **Degenerate perturbation theory** is accomplished by finding a **particular** set of linear combinations of the $|\alpha_i\rangle$'s, i.e. within the degenerate subspace, that diagonalizes the perturbation matrix $(\mathbf{H}')_{ii} \equiv \langle i^{(0)} | \hat{H}' | j^{(0)} \rangle$.

Once you have found these linear combinations $\left\{ \left| \beta_1^{(0)} \right\rangle, ..., \left| \beta_n^{(0)} \right\rangle \right\}$, i.e. the <u>eigenvectors of *H'*</u> within the degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections :

$$E_{\beta i}^{(1)} = \left\langle \beta_i^{(0)} \middle| H' \middle| \beta_i^{(0)} \right\rangle$$

These are the expectation values of H' in the new basis states $|\beta_i^{(0)}\rangle$, i.e. *it is exactly our normal formula for* $E_i^{(1)}$, just using the new basis.

Problem 1 : A Perturbed Hamiltonian in Matrix Form

Consider a quantum system with only three linearly independent states. We label these states $|1\rangle$, $|2\rangle$, $|3\rangle$. The system's Hamiltonian, expressed in the ordered basis $\{|1\rangle, |2\rangle, |3\rangle\}$, is

$$\mathbf{H} = V_0 \left(\begin{array}{ccc} (1 - \varepsilon) & 0 & 0 \\ 0 & 1 & \varepsilon \\ 0 & \varepsilon & 2 \end{array} \right)$$

where V_0 is a constant that we will immediately set to 1 for convenience and ε is a small number << 1.

Part the First : The Exact Spectrum

(a) Calculate the <u>exact</u> eigenvalues E_1 , E_2 , and E_3 of the Hamiltonian **H** without using any perturbation-theory formulae at all. As shown in class, wolframalpha will readily do this for you using the command

eigenvalues { { a, b, c }, { d, e, f }, { g, h, i }

where the letters are the matrix elements. Next, expand each of them as a power series in ε , up to second order. Of course Taylor expansions are so! enjoyable! that you will have no need for the command

```
expand function_of_x around x=0
```

Part the Second : The Perturbative Approximation

Now use first- and second-order <u>non-degenerate perturbation theory</u> (formulae on the back page) to find the approximate eigenvalues of the Hamiltonian **H**. You will proceed in steps:

(b) Separate **H** into a dominant "unperturbed" part **H**₀ plus a small perturbation **H**'. Next, write down the eigenvalues $E_1^{(0)}, E_2^{(0)}, E_3^{(0)}$ and eigenvectors $|1^{(0)}\rangle, |2^{(0)}\rangle, |3^{(0)}\rangle$ of the <u>unperturbed Hamiltonian</u>.

(c) Those were the "0th order" terms in the energy spectrum. Now use <u>1st- and 2nd-order</u> non-degenerate perturbation theory (formulae are on the back page) to find the approximate eigenvalue for <u>state #3</u>. Does it match the exact value from (a) to 2nd order in the small quantity ε ?

¹**Q1** (a) exact eigenvalues of *H* Taylor-approximated to order ε^2 are : $E_1 = 1 - \varepsilon$, $E_2 \approx 1 - \varepsilon^2$, $E_3 \approx 2 + \varepsilon^2$

(b) $\mathbf{H}_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, $\mathbf{H}' = \begin{pmatrix} -\varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon \\ 0 & \varepsilon & 0 \end{pmatrix}$. Since \mathbf{H}_0 is diagonal, it is written in terms of its own eigenvectors.

Turning those words around, the eigenvectors of \mathbf{H}_0 are the basis vectors in terms of which \mathbf{H}_0 is written:

eigen-
vector
$$|1^{(0)}\rangle$$
 of $H_0 = \frac{\text{basis}}{\text{vector}}\begin{pmatrix}1\\0\\0\end{pmatrix}, |2^{(0)}\rangle = \begin{pmatrix}0\\1\\0\end{pmatrix}, |3^{(0)}\rangle = \begin{pmatrix}0\\0\\1\end{pmatrix}.$

As always with a diagonal matrix, the diagonal elements are the **eigenvalues** : $E_1^{(0)} = 1$, $E_2^{(0)} = 1$, $E_3^{(0)} = 2$.

(c)
$$E_{3}^{(0)+(1)+(2)} = E_{3}^{(0)} + H_{33}' + \left[\frac{|H_{13}'|^2}{E_{3}^{(0)} - E_{1}^{(0)}} + \frac{|H_{23}'|^2}{E_{3}^{(0)} - E_{2}^{(0)}}\right] = 2 + 0 + \left[\frac{0^2}{2-1} + \frac{\varepsilon^2}{2-1}\right] = 2 + \varepsilon^2 \checkmark \odot$$

(d) Correcting to 1st order only, $E_1^{(0)+(1)} = E_1^{(0)} + H'_{11} = 1 - \varepsilon$ \checkmark and $E_2^{(0)+(1)} = E_2^{(0)} + H'_{22} = 1 + 0 = 1$ \checkmark

(e) State #3 is NON-degenerate at 0th order, while states #2 and #1 are degenerate. The 2nd order correction formula for energy #1 or energy #2 would involve a term with $E_1^{(0)} - E_2^{(0)} = 0$ in the denominator \rightarrow a divide-by-zero error.

(d) Now apply the <u>1st-order</u> non-degenerate PT formula to find the approximate eigenvalues for <u>states #1 & #2</u>. (Don't calculate the 2nd order correction this time.) Do the non-degenerate formulae work give the correct energy corrections for states #1 and #2 to 1st order in ε ?

If you are surprised at your result, hang on, we'll revisit it in the next question.

(e) What is special about state #3 that allows us to compute its 2^{nd} -order energy correction using the back-page formulae, while we cannot do so for states #1 & #2?

Problem 2 : That was kind of surprising ... now try this:

Checkpoints²

Here is a slightly different Hamiltonian for the same 3-level system:

 $\mathbf{H} = V_0 \begin{pmatrix} (1-\varepsilon) & 0 & 0 \\ 0 & 2 & \varepsilon \\ 0 & \varepsilon & 2 \end{pmatrix}$ where V_0 is set to 1 (poof!) by an ingenious choice of units.

(a) Write down the eigenvalues of the <u>unperturbed part</u>, H_0 , of the Hamiltonian.

(b) Find the <u>exact</u> eigenvalues E_1 , E_2 , and E_3 of the <u>full</u> Hamiltonian, H. Feel free to use wolframalpha.

(c) Apply the non-degenerate-PT formulae to read off the energy corrections to all three states at first order in ε . Do they give the correct results this time?

(d) The perturbation H' is not diagonal this time in the degenerate subspace of { |state # 2⟩, |state # 3⟩ },
i.e. the off-diagonal matrix elements H'₂₃ and H'₃₂ within this subspace are NOT zero. In contrast, in question 1 the perturbation H' was <u>already diagonal</u> in the degenerate subspace of { |state # 1⟩, |state # 2⟩ }, i.e. the off-diagonal matrix

elements H'_{12} and H'_{21} within that subspace were zero.

(e) Focus on the degenerate subspace $D = \{ |2\rangle, |3\rangle \}$... Within this subspace, the perturbing matrix H' is $\begin{pmatrix} H'_{22} & H'_{23} \\ H'_{32} & H'_{33} \end{pmatrix} = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix}$... We must find a **new basis** $\{ |\beta_2\rangle, |\beta_3\rangle \}$ for the subspace D that **diagonalizes** this 2×2 matrix

... To diagonalize a matrix, find its **eigenvectors** and use them as your new basis

... The eigenvectors of $H'_{\rm D} = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix}$ are $\sim \begin{pmatrix} \pm 1 \\ 1 \end{pmatrix}$ with eigenvalues $2 \pm \varepsilon$

... When the matrix $\begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix}$ is expressed *in its own eigen-basis* $\{ |\beta_2\rangle, |\beta_3\rangle \} = \frac{1}{\sqrt{2}} \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \}$, it will be diagonal with its eigenvalues as its diagonal elements (I hope this is becoming obvious; if not, ask!!!) ... It will become $\begin{pmatrix} \varepsilon & 0 \\ 0 & -\varepsilon \end{pmatrix}$

... Now return to the full 3-dimensional space of our system, what basis vectors are we switching to?

... Only the degenerate subspace $D = \{ |2\rangle, |3\rangle \}$ is altered, $|1\rangle$ is left unchanged

 $\dots \text{ Our new basis vectors for the system are } \left\{ \begin{array}{c} |1\rangle, \left|\beta_{2}\rangle, \left|\beta_{3}\rangle\right.\right\} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \right\} \\ \dots \text{ What's the Hamiltonian in the new basis? } \dots H = \left(\begin{array}{c} 1-\varepsilon & 0 & 0\\0 & 2+\varepsilon & 0\\0 & 0 & 2-\varepsilon \end{array} \right) \rightarrow H_{0} = \left(\begin{array}{c} 1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2 \end{array} \right) \& H' = \left(\begin{array}{c} -\varepsilon & 0 & 0\\0 & \varepsilon & 0\\0 & 0 & -\varepsilon \end{array} \right)$

What are the 1st-order energy corrections? ... $E_1 \approx E_1^{(0)} + H'_{11} = 1 - \varepsilon$, similarly $E_2 \approx 2 + \varepsilon$ and $E_3 \approx 2 - \varepsilon$ \checkmark matches exact (b)

² Q2 (a) $E_{1,2,3}^{(0)} = 1, 2, 2$ (b) exact eigenvalues are $E_{1,2,3} = 1 - \varepsilon$, $2 - \varepsilon$, $2 + \varepsilon \rightarrow$ this time all corrections are exactly 1st order in ε (c) correcting to 1st order, $E_1 \approx E_1^{(0)} + H'_{11} = 1 - \varepsilon \checkmark \dots E_2 \approx E_2^{(0)} + H'_{22} = 2 + 0 = 2 \varkappa \dots E_3 \approx E_3^{(0)} + H'_{33} = 2 + 0 = 2 \varkappa$

(d) No they do not! WHY NOT? And why did the 1st order formulae work just fine in Question 1, where we ALSO had a pair of degenerate levels. What was different there?

(e) So this time, we must apply our degenerate-PT prescription to obtain 1st order corrections for the degenerate states #2 and #3. Do that! Your first task is to immediately **extract the degenerate subspace** from the full problem --> extract rows & columns #2 & #3 from the matrices H₀ and H', producing 2×2 sub-matrices. Once you have those two sub-matrices, follow the procedure we went through in the 2×2 example in class (see the lecture notes), or as described on the first page of this discussion. A list of progressive hints / steps is also provided in the footnote for this question. If you *really* don't want to do any matrix manipulations by hand, you might try out the wolframalpha command **diagonalize**; if you compare its output to the matrix-transformation formulae from the lecture notes, you will see that the matrix "S" it spits out is the "R⁻¹" matrix from the notes, with columns equal to the eigenvectors of the input matrix (which it calls "M"). At the end of your work, you should have 1st-order energy corrections for states #2 and #3 that <u>do</u> match the exact values.

(f) We have so far only on tested the PT corrections to the *eigenvalues* against the exact results we obtained from wolframalpha. What about the *eigenvectors*? The new basis vectors you found in (e) by diagonalizing H' within the degenerate subspace $\{\#2, \#3\}$ should be the actual eigenvectors of the full $H = H_0 + H'$, accurate to first order in ε . Let's check. When you use wolframalpha's **eigenvalues** command, it usually gives you both eigenvalues and eigenvectors; otherwise, try the **eigenvectors** command. Verify that your new basis from part (e) does indeed match the exact eigenvectors of H, at least to 1st order in ε .

Problem 3 : A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy V(r). A weak perturbation $\delta V(x,y,z)$ is applied:

$$V(r) = \frac{m\omega^{2}}{2} (x^{2} + y^{2} + z^{2}) \quad \text{and} \quad \delta V(x, y, z) = U xyz + \frac{U^{2}}{\hbar\omega} x^{2} y^{2} z^{2}$$

where U is a small parameter. Use perturbation theory to calculate the <u>change</u> in the <u>ground state energy</u> to order $O(U^2)$. Use without proof all the results you like from the 1D SHO \rightarrow see **Formulae-SHO-reference.pdf** on our website for the full collection.

----- Formulae for perturbative corrections to non-degenerate states -----

- "zeroth-order" Hamiltonian H_0 has <u>exact</u> eigenvalues $\{E_n^{(0)}\}$ and eigenstates $\{|n^{(0)}\rangle\}$
- actual Hamiltonian $H = H_0 + H'$ where H' is a small correction to H_0 (a "perturbation", $H' \ll H_0$)
- series expansion of H eigenvalues: $E_n = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \dots$ for each n, where $E_n^{(0)} \gg E_n^{(1)} \gg E_n^{(2)} \gg \dots$
- series expansion of *H* eigenstates: $|n\rangle = |n^{(0)}\rangle + |n^{(1)}\rangle + |n^{(2)}\rangle + \dots$ for each *n*, where $|n^{(0)}\rangle \gg |n^{(1)}\rangle \gg \dots$

As long as the unperturbed eigenstates $\{|n^{(0)}\rangle\}$ are **non-degenerate** and the Hamiltonian $H = H_0 + H'$ has **no explicit time-dependence**, the corrections to the energy eigenvalues E_n and eigenstates $|n\rangle$ are given by

• $E_{n}^{(1)} = \langle n^{(0)} | H' | n^{(0)} \rangle = H'_{nn} = \text{expectation value of } H' \text{ in the } n^{\text{th}} \text{ unperturbed state}$ • $\left| n^{(1)} \rangle = \sum_{m \neq n} \frac{H'_{mn}}{E_{n}^{(0)} - E_{m}^{(0)}} | m^{(0)} \rangle \text{ where } H'_{mn} \text{ is the matrix element } \langle m^{(0)} | H' | n^{(0)} \rangle$

•
$$E_n^{(k)} = \langle n^{(0)} | H' | n^{(k-1)} \rangle$$
 for higher orders ... which gives $E_n^{(2)} = \sum_{m \neq n} \frac{|H'_{mn}|^2}{E_n^{(0)} - E_m^{(0)}} = \langle n^{(0)} | H' | n^{(1)} \rangle$