
Phys 487 Discussion 7 – Degenerate Perturbation Theory

● The Old Stuff : Formulae for perturbative corrections to non-degenerate states are on the last page.

● The New Stuff : The Procedure for dealing with degenerate states is as follows : 

Perturbation theory always starts with an “unperturbed” Hamiltonian H0 whose eigenstates n(0)  or ψ n
(0){ }  

and eigenvalues En
(0){ }  can be obtained exactly.  A small perturbing Hamiltonian H′ << H0 is then added to H0 

to produce the full Hamiltonian H = H0 + ε ′H .  This is the Hamiltonian whose eigen-things we would like to 
obtain.  I have attached a dimensionless scale factor ε << 1 to H′ so that I can easily keep track of orders of 
smallness.  (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)  

Suppose that a subset of the unperturbed eigen-energies En
(0){ }  are degenerate, i.e. have the same value Eα.

Let the quantum numbers of these degenerate eigenstates be { α1, α2, α3, …, αn }.  If we write H0 in matrix 
form using as basis the unperturbed eigenstates n(0){ } ,  we get the diagonal matrix H0( )mn ≡ m(0) Ĥ0 n

(0) : 
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Eα
Eα
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⎟

   where all the empty elements are 0. 

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily.  
The degenerate states α 1

(0) , ..., α n
(0){ } , which are just 3(0) , 4(0){ }  here,  form a degenerate subspace 

where any linear combination of the | αi >’s is also an eigenstate of H0 with the same eigenvalue Eα. 

Degenerate perturbation theory is accomplished by finding a particular
set of linear combinations of the | αi 〉’s, i.e. within the degenerate subspace, 

that diagonalizes the perturbation matrix ′H( )ij ≡ i(0) ˆ ′H j (0) .

Once you have found these linear combinations β1
(0) , ..., β n

(0){ } ,  i.e. the eigenvectors of H′ within the 

degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections :

	 	 Eβi
(1) = β i

(0) ′H β i
(0)

These are the expectation values of H′ in the new basis states β i
(0) , i.e. it is exactly our normal formula for 

Ei
(1) , just using the new basis.  



Problem 1 : A Perturbed Hamiltonian in Matrix Form	 adapted from Griffiths 6.9, Checkpoints 1

Consider a quantum system with only three linearly independent states.  We label these states 1 , 2 , 3 .  
The system’s Hamiltonian, expressed in the ordered basis 1 , 2 , 3{ } , is  

	 	 H =V0

(1− ε ) 0 0
0 1 ε
0 ε 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where V0 is a constant that we will immediately set to 1 for convenience  and ε is a small number << 1. 

Part the First : The Exact Spectrum

(a)  Calculate the exact eigenvalues E1, E2, and E3 of the Hamiltonian H without using any perturbation-theory 
formulae at all.  As shown in class, wolframalpha will readily do this for you using the command 

	 	 eigenvalues { { a, b, c }, { d, e, f  }, { g, h, i } } 

where the letters are the matrix elements.  Next, expand each of them as a power series in ε, up to second order.  
Of course Taylor expansions are so! enjoyable! that you will have no need for the command

	 	 expand function_of_x around x=0 

Part the Second : The Perturbative Approximation

Now use first- and second-order non-degenerate perturbation theory (formulae on the back page) to find the 
approximate eigenvalues of the Hamiltonian H.  You will proceed in steps:  

(b)  Separate H into a dominant “unperturbed” part H0 plus a small perturbation H′.  Next, write down the 
eigenvalues E1

(0), E2
(0), E3

(0)  and eigenvectors 1(0) , 2(0) , 3(0)  of the unperturbed Hamiltonian.  

(c)  Those were the “0th order” terms in the energy spectrum.  Now use 1st- and 2nd-order non-degenerate 
perturbation theory (formulae are on the back page) to find the approximate eigenvalue for state #3.  
Does it match the exact value from (a) to 2nd order in the small quantity ε? 

1 Q1  (a)  exact eigenvalues of H Taylor-approximated to order ε² are :  E1 = 1 – ε,   E2 ≈ 1 – ε²,   E3 ≈ 2 + ε²   

(b)  H0 =
1 0 0
0 1 0
0 0 2

⎛

⎝
⎜

⎞

⎠
⎟ ,  ′H =

−ε 0 0
0 0 ε
0 ε 0

⎛

⎝
⎜

⎞

⎠
⎟ .   Since H0 is diagonal, it is written in terms of its own eigenvectors.

	 Turning those words around, the eigenvectors of H0 are the basis vectors in terms of which H0 is written:   

	 eigen-
vector

1(0) of H0 = basis
vector

1
0
0

⎛

⎝
⎜

⎞

⎠
⎟ , 2(0) =

0
1
0

⎛

⎝
⎜

⎞

⎠
⎟ , 3(0) =

0
0
1

⎛

⎝
⎜

⎞

⎠
⎟ .

	 As always with a diagonal matrix, the diagonal elements are the eigenvalues : E 1
(0) = 1 ,   E 2

(0) = 1 ,   E 3
(0) = 2 .  

(c)  E 3
(0)+(1)+(2) = E3

(0) + ′H 33 +
′H13
2

E3
(0) − E1

(0) +
′H23
2

E3
(0) − E2

(0)
⎡

⎣
⎢

⎤

⎦
⎥ = 2 + 0 +

02

2 − 1
+

ε 2

2 − 1
⎡
⎣⎢

⎤
⎦⎥
= 2 + ε 2  ✔ ☺︎ 

(d) Correcting to 1st order only, E 1
(0)+(1) = E1

(0) + ′H11 = 1 – ε  ✔ and E 2
(0)+(1) = E2

(0) + ′H22 = 1+ 0 = 1  ✔
(e)  State #3 is NON-degenerate at 0th order, while states #2 and #1 are degenerate.  The 2nd order correction formula for energy #1 or 
energy #2 would involve a term with E1

(0) − E2
(0) = 0  in the denominator → a divide-by-zero error.



(d)  Now apply the 1st-order non-degenerate PT formula to find the approximate eigenvalues for states #1 & #2.  
(Don’t calculate the 2nd order correction this time.)  Do the non-degenerate formulae work give the correct 
energy corrections for states #1 and #2 to 1st order in ε?  

If you are surprised at your result, hang on, we’ll revisit it in the next question. 

(e)  What is special about state #3 that allows us to compute its 2nd-order energy correction using the back-page 
formulae, while we cannot do so for states #1 & #2? 

Problem 2 : That was kind of surprising … now try this: 	 Checkpoints 2

Here is a slightly different Hamiltonian for the same 3-level system: 

	 	 H =V0

(1− ε ) 0 0
0 2 ε
0 ε 2

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
⎟

           where V0 is set to 1 (poof!) by an ingenious choice of units.  

(a)  Write down the eigenvalues of the unperturbed part, H0, of the Hamiltonian.

(b)  Find the exact eigenvalues E1, E2, and E3 of the full Hamiltonian, H.  Feel free to use wolframalpha. 

(c)  Apply the non-degenerate-PT formulae to read off the energy corrections to all three states at first order in ε.  
Do they give the correct results this time? 

2 Q2  (a)  E 1,2,3
(0) = 1 , 2, 2   (b)  exact eigenvalues are E1,2,3 = 1 – ε,   2 – ε,  2 + ε → this time all corrections are exactly 1st order in ε 

(c) correcting to 1st order, E 1 ≈ E1
(0) + ′H11 = 1 – ε  ✔ ... E 2 ≈ E2

(0) + ′H22 = 2 + 0 = 2  ✘ …  E 3 ≈ E3
(0) + ′H 33 = 2 + 0 = 2  ✘

(d) The perturbation H′ is not diagonal this time in the degenerate subspace of state # 2 , state # 3{ } , 
      i.e. the off-diagonal matrix elements H′23 and H′32 within this subspace are NOT zero.  In contrast, in question 1 
      the perturbation H′ was already diagonal in the degenerate subspace of state #1 , state # 2{ }, i.e. the off-diagonal matrix 
      elements H′12 and H′21 within that subspace were zero. 

(e)  Focus on the degenerate subspace D= 2 , 3{ }… Within this subspace, the perturbing matrix H′ is 
′H22 ′H23
′H 32 ′H 33

⎛
⎝

⎞
⎠ = 0 ε

ε 0( ) 
… We must find a new basis β2 , β3{ }  for the subspace D that diagonalizes this 2×2 matrix 

… To diagonalize a matrix, find its eigenvectors and use them as your new basis 

… The eigenvectors of ′HD = 0 ε
ε 0( ) are ~ ±1

1( )  with eigenvalues 2 ± ε  

… When the matrix 0 ε
ε 0( )  is expressed in its own eigen-basis β2 , β3{ } =

1

2
1
1( ), –1

1( ){ },  it will be diagonal with 

     its eigenvalues as its diagonal elements (I hope this is becoming obvious; if not, ask!!!)  … It will become ε 0
0 −ε( )  

… Now return to the full 3-dimensional space of our system, what basis vectors are we switching to?  
… Only the degenerate subspace D= 2 , 3{ }  is altered, 1  is left unchanged 

… Our new basis vectors for the system are 1 , β2 , β3{ }=
1
0
0

⎛

⎝
⎜

⎞

⎠
⎟ ,

1

2

0
1
1

⎛

⎝
⎜

⎞

⎠
⎟ ,

1

2

0
−1
1

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

… What’s the Hamiltonian in the new basis? … H =
1− ε 0 0
0 2 + ε 0
0 0 2 – ε

⎛
⎝⎜

⎞
⎠⎟

 → H0 =
1 0 0
0 2 0
0 0 2

⎛
⎝⎜

⎞
⎠⎟

 & ′H =
−ε 0 0
0 ε 0
0 0 −ε

⎛
⎝⎜

⎞
⎠⎟

What are the 1st-order energy corrections? … E1 ≈ E1
(0) + ′H11 = 1 – ε ,  similarly E2 ≈ 2 + ε  and E3 ≈ 2 − ε  ✔ matches exact (b)



(d)  No they do not!  WHY NOT?  And why did the 1st order formulae work just fine in Question 1, where we 
ALSO had a pair of degenerate levels.  What was different there? 

(e)  So this time, we must apply our degenerate-PT prescription to obtain 1st order corrections for the degenerate 
states #2 and #3.  Do that!   Your first task is to immediately extract the degenerate subspace from the full 
problem --> extract rows & columns #2 & #3 from the matrices H0 and H′, producing 2×2 sub-matrices.  
Once you have those two sub-matrices, follow the procedure we went through in the 2×2 example in class (see 
the lecture notes), or as described on the first page of this discussion.  A list of progressive hints / steps is also 
provided in the footnote for this question.  If you really don’t want to do any matrix manipulations by hand, you 
might try out the wolframalpha command diagonalize; if you compare its output to the matrix-
transformation formulae from the lecture notes, you will see that the matrix “S” it spits out is the “R–1” matrix 
from the notes, with columns equal to the eigenvectors of the input matrix (which it calls “M”).  At the end of 
your work, you should have 1st-order energy corrections for states #2 and #3 that do match the exact values. 

(f)  We have so far only on tested the PT corrections to the eigenvalues against the exact results we obtained 
from wolframalpha.  What about the eigenvectors?  The new basis vectors you found in (e) by diagonalizing H′ 
within the degenerate subspace {#2, #3} should be the actual eigenvectors of the full H = H0 + H′, accurate to 
first order in ε.  Let’s check.  When you use wolframalpha’s eigenvalues command, it usually gives you 
both eigenvalues and eigenvectors; otherwise, try the eigenvectors command.  Verify that your new basis 
from part (e) does indeed match the exact eigenvectors of H, at least to 1st order in ε.  

Problem 3 : A Second-Order Perturbation Theory Problem 

A particle moves in a 3D SHO with potential energy V(r).  A weak perturbation δV(x,y,z) is applied:  

	 	 V (r) = mω
2

2
x2+y2 + z2( ) 	 	 and 	

 
δV (x, y, z) =U xyz + U

2

!ω
x2y2z2  

where U is a small parameter.  Use perturbation theory to calculate the change in the ground state energy to 
order O(U2).  Use without proof all the results you like from the 1D SHO → see Formulae-SHO-reference.pdf 
on our website for the full collection. 

—————— Formulae for perturbative corrections to non-degenerate states ——————

	 • “zeroth-order” Hamiltonian H0 		 has exact eigenvalues En
(0){ }  and eigenstates n(0){ }

	 • actual Hamiltonian H = H0 + ′H   	where ′H  is a small correction to H0 (a “perturbation”,  ′H ≪ H0 )

	 • series expansion of H eigenvalues: 	En = En
(0) + En

(1) + En
(2) + ...  for each n, where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • series expansion of H eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ...

As long as the unperturbed eigenstates n(0){ }  are non-degenerate and the Hamiltonian H = H0 + ′H  has 
no explicit time-dependence,  the corrections to the energy eigenvalues En and eigenstates n  are given by

	 ●  E n
(1) = n(0) ′H n(0) = ′Hnn   = expectation value of H′ in the nth unperturbed state 

	 ●  n(1) = ′Hmn
En
(0) − Em

(0)
m≠n
∑ m(0)   where ′Hmn  is the matrix element m(0) ′H n(0)

	 ●  E n
(k ) = n(0) ′H n(k−1)   for higher orders   ...   which gives En

(2) =
′Hmn

2

En
(0) − Em

(0)
m≠n
∑ = n(0) ′H n(1)


