Phys 487 Discussion 7 - Degenerate Perturbation Theory

- The Old Stuff : Formulae for perturbative corrections to non-degenerate states are on the last page.
- The New Stuff : The Procedure for dealing with degenerate states is as follows :

Perturbation theory always starts with an "unperturbed" Hamiltonian H_{0} whose eigenstates $\left\{\left|n^{(0)}\right\rangle\right.$ or $\left.\psi_{n}^{(0)}\right\}$ and eigenvalues $\left\{E_{n}^{(0)}\right\}$ can be obtained exactly. A small perturbing Hamiltonian $H^{\prime} \ll H_{0}$ is then added to H_{0} to produce the full Hamiltonian $H=H_{0}+\varepsilon H^{\prime}$. This is the Hamiltonian whose eigen-things we would like to obtain. I have attached a dimensionless scale factor $\varepsilon \ll 1$ to H^{\prime} so that I can easily keep track of orders of smallness. (Sometimes such a small scale factor is an intrinsic part of the problem, sometimes not.)
Suppose that a subset of the unperturbed eigen-energies $\left\{E_{n}^{(0)}\right\}$ are degenerate, i.e. have the same value E_{α}. Let the quantum numbers of these degenerate eigenstates be $\{\alpha 1, \alpha 2, \alpha 3, \ldots, \alpha n\}$. If we write H_{0} in matrix form using as basis the unperturbed eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$, we get the diagonal matrix $\left(\mathbf{H}_{0}\right)_{m n} \equiv\left\langle m^{(0)}\right| \hat{H}_{0}\left|n^{(0)}\right\rangle$:

$$
\mathbf{H}_{0}=\left(\begin{array}{cccccc}
E_{1}^{(0)} & & & & & \\
& E_{2}^{(0)} & & & & \\
& & \boldsymbol{E}_{\alpha} & & & \\
& & & \boldsymbol{E}_{\alpha} & & \\
& & & & E_{5}^{(0)} & \\
& & & & & \\
& & & & & \ldots
\end{array}\right) \text { where all the empty elements are } 0
$$

I have bold-faced the degenerate energies and left off the superscript (0) so that you can spot them easily. The degenerate states $\left\{\left|\alpha_{1}^{(0)}\right\rangle, \ldots,\left|\alpha_{n}^{(0)}\right\rangle\right\}$, which are just $\left\{\left|3^{(0)}\right\rangle,\left|4^{(0)}\right\rangle\right\}$ here, form a degenerate subspace where any linear combination of the $\mid \alpha_{\mathrm{i}}$ >'s is also an eigenstate of H_{0} with the same eigenvalue E_{α}.

Degenerate perturbation theory is accomplished by finding a particular set of linear combinations of the $\left|\alpha_{i}\right\rangle$'s, i.e. within the degenerate subspace, that diagonalizes the perturbation matrix $\left(\mathbf{H}^{\prime}\right)_{i j} \equiv\left\langle i^{(0)}\right| \hat{H}^{\prime}\left|j^{(0)}\right\rangle$.
Once you have found these linear combinations $\left\{\left|\beta_{1}^{(0)}\right\rangle, \ldots,\left|\beta_{n}^{(0)}\right\rangle\right\}$, i.e. the eigenvectors of H^{\prime} within the degenerate subspace, find their corresponding eigenvalues and you will have your first-order corrections :

$$
E_{\beta i}^{(1)}=\left\langle\beta_{i}^{(0)}\right| H^{\prime}\left|\beta_{i}^{(0)}\right\rangle
$$

These are the expectation values of H^{\prime} in the new basis states $\left|\beta_{i}^{(0)}\right\rangle$, i.e. it is exactly our normal formula for $E_{i}^{(1)}$, just using the new basis.

Consider a quantum system with only three linearly independent states. We label these states $|1\rangle,|2\rangle,|3\rangle$. The system's Hamiltonian, expressed in the ordered basis $\{|1\rangle,|2\rangle,|3\rangle\}$, is

$$
\mathbf{H}=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 1 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

where V_{0} is a constant that we will immediately set to 1 for convenience and ε is a small number $\ll 1$.

Part the First : The Exact Spectrum

(a) Calculate the exact eigenvalues E_{1}, E_{2}, and E_{3} of the Hamiltonian \mathbf{H} without using any perturbation-theory formulae at all. As shown in class, wolframalpha will readily do this for you using the command

```
eigenvalues { {a,b,c},{d,e,f},{ g,h,i}}
```

where the letters are the matrix elements. Next, expand each of them as a power series in ε, up to second order. Of course Taylor expansions are so! enjoyable! that you will have no need for the command

expand function_of_x around $\mathrm{x}=0$

Part the Second : The Perturbative Approximation

Now use first- and second-order non-degenerate perturbation theory (formulae on the back page) to find the approximate eigenvalues of the Hamiltonian \mathbf{H}. You will proceed in steps:
(b) Separate \mathbf{H} into a dominant "unperturbed" part \mathbf{H}_{0} plus a small perturbation \mathbf{H}^{\prime}. Next, write down the eigenvalues $E_{1}^{(0)}, E_{2}^{(0)}, E_{3}^{(0)}$ and eigenvectors $\left|1^{(0)}\right\rangle,\left|2^{(0)}\right\rangle,\left|3^{(0)}\right\rangle$ of the unperturbed Hamiltonian.
(c) Those were the " $0^{\text {th }}$ order" terms in the energy spectrum. Now use $1^{\text {st }}$ and $2^{\text {nd }}$-order non-degenerate perturbation theory (formulae are on the back page) to find the approximate eigenvalue for state \#3.
Does it match the exact value from (a) to $2^{\text {nd }}$ order in the small quantity ε ?
${ }^{1}$ Q1 (a) exact eigenvalues of H Taylor-approximated to order ε^{2} are : $E_{1}=1-\varepsilon, E_{2} \approx 1-\varepsilon^{2}, E_{3} \approx 2+\varepsilon^{2}$
(b) $\mathbf{H}_{0}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right), \mathbf{H}^{\prime}=\left(\begin{array}{ccc}-\varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon \\ 0 & \varepsilon & 0\end{array}\right)$. Since \mathbf{H}_{0} is diagonal, it is written in terms of its own eigenvectors.

Turning those words around, the eigenvectors of \mathbf{H}_{0} are the basis vectors in terms of which \mathbf{H}_{0} is written:
eigen-
vector $\left|1^{(0)}\right\rangle$ of $H_{0}=\underset{\text { vector }}{\operatorname{basis}}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left|2^{(0)}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad\left|3^{(0)}\right\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
As always with a diagonal matrix, the diagonal elements are the eigenvalues : $E_{1}^{(0)}=1, E_{2}^{(0)}=1, \quad E_{3}^{(0)}=2$.
(c) $E_{3}^{(0)+(1)+(2)}=E_{3}^{(0)}+H_{33}^{\prime}+\left[\frac{\left|H_{13}^{\prime}\right|^{2}}{E_{3}^{(0)}-E_{1}^{(0)}}+\frac{\left|H_{23}^{\prime}\right|^{2}}{E_{3}^{(0)}-E_{2}^{(0)}}\right]=2+0+\left[\frac{0^{2}}{2-1}+\frac{\varepsilon^{2}}{2-1}\right]=2+\varepsilon^{2} \boldsymbol{\sim}$ ©
(d) Correcting to $1^{\text {st }}$ order only, $E_{1}^{(0)+(1)}=E_{1}^{(0)}+H_{11}^{\prime}=1-\varepsilon \boldsymbol{V}$ and $E_{2}^{(0)+(1)}=E_{2}^{(0)}+H_{22}^{\prime}=1+0=1 \boldsymbol{\sim}$
(e) State \#3 is NON-degenerate at $0^{\text {th }}$ order, while states \#2 and \#1 are degenerate. The $2^{\text {nd }}$ order correction formula for energy \#1 or energy \#2 would involve a term with $E_{1}^{(0)}-E_{2}^{(0)}=0$ in the denominator \rightarrow a divide-by-zero error.
(d) Now apply the $\underline{1}^{\text {st-order non-degenerate PT formula to find the approximate eigenvalues for states \#1 \& \#2. }}$ (Don't calculate the $2^{\text {nd }}$ order correction this time.) Do the non-degenerate formulae work give the correct energy corrections for states \#1 and \#2 to $1^{\text {st }}$ order in ε ?

If you are surprised at your result, hang on, we'll revisit it in the next question.
(e) What is special about state \#3 that allows us to compute its $2^{\text {nd }}$-order energy correction using the back-page formulae, while we cannot do so for states \#1 \& \#2?

Problem 2: That was kind of surprising ... now try this:
Checkpoints ${ }^{2}$
Here is a slightly different Hamiltonian for the same 3-level system:

$$
\mathbf{H}=V_{0}\left(\begin{array}{ccc}
(1-\varepsilon) & 0 & 0 \\
0 & 2 & \varepsilon \\
0 & \varepsilon & 2
\end{array}\right)
$$

where V_{0} is set to 1 (poof!) by an ingenious choice of units.
(a) Write down the eigenvalues of the unperturbed part, H_{0}, of the Hamiltonian.
(b) Find the exact eigenvalues E_{1}, E_{2}, and E_{3} of the full Hamiltonian, H. Feel free to use wolframalpha.
(c) Apply the non-degenerate-PT formulae to read off the energy corrections to all three states at first order in ε. Do they give the correct results this time?
${ }^{2} \mathbf{Q 2}$ (a) $E_{1,2,3}^{(0)}=1,2,2$ (b) exact eigenvalues are $E_{1,2,3}=1-\varepsilon, 2-\varepsilon, 2+\varepsilon \rightarrow$ this time all corrections are exactly $1^{\text {st }}$ order in ε (c) correcting to $1^{\text {st }}$ order, $E_{1} \approx E_{1}^{(0)}+H_{11}^{\prime}=1-\varepsilon \boldsymbol{\sim} \ldots E_{2} \approx E_{2}^{(0)}+H_{22}^{\prime}=2+0=2 \boldsymbol{x} \ldots E_{3} \approx E_{3}^{(0)}+H_{33}^{\prime}=2+0=2 \boldsymbol{x}$
(d) The perturbation H^{\prime} is not diagonal this time in the degenerate subspace of $\{\mid$ state \# 2\rangle, \mid state \# 3$\left.\rangle\right\}$, i.e. the off-diagonal matrix elements $\mathrm{H}^{\prime}{ }_{23}$ and $\mathrm{H}^{\prime} 32$ within this subspace are NOT zero. In contrast, in question 1 the perturbation H^{\prime} was already diagonal in the degenerate subspace of $\{\mid$ state $\# 1\rangle, \mid$ state $\left.\left.\# 2\right\rangle\right\}$, i.e. the off-diagonal matrix elements $H^{\prime}{ }_{12}$ and $H^{\prime}{ }_{21}$ within that subspace were zero.
(e) Focus on the degenerate subspace $\mathrm{D}=\{|2\rangle,|3\rangle\} \ldots$. Within this subspace, the perturbing matrix H^{\prime} is $\left(\begin{array}{cc}H_{22}^{\prime} & H_{23}^{\prime} \\ H_{32}^{\prime} & H_{33}^{\prime}\end{array}\right)=\left(\begin{array}{ll}0 & \varepsilon \\ \varepsilon & 0\end{array}\right)$ \ldots We must find a new basis $\left\{\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}$ for the subspace D that diagonalizes this 2×2 matrix
... To diagonalize a matrix, find its eigenvectors and use them as your new basis
\ldots The eigenvectors of $H_{D}^{\prime}=\left(\begin{array}{cc}0 & \varepsilon \\ \varepsilon & 0\end{array}\right)$ are $\sim\binom{ \pm 1}{1}$ with eigenvalues $2 \pm \varepsilon$
\ldots When the matrix $\left(\begin{array}{cc}0 & \varepsilon \\ \varepsilon & 0\end{array}\right)$ is expressed in its own eigen-basis $\left\{\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}=\frac{1}{\sqrt{2}}\left\{\binom{1}{1},\binom{-1}{1}\right\}$, it will be diagonal with its eigenvalues as its diagonal elements (I hope this is becoming obvious; if not, ask!!!) ... It will become $\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & -\varepsilon\end{array}\right)$
... Now return to the full 3-dimensional space of our system, what basis vectors are we switching to?
\ldots Only the degenerate subspace $D=\{|2\rangle,|3\rangle\}$ is altered, $|1\rangle$ is left unchanged
\ldots Our new basis vectors for the system are $\left\{|1\rangle,\left|\beta_{2}\right\rangle,\left|\beta_{3}\right\rangle\right\}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)\right\}$
\ldots What's the Hamiltonian in the new basis? $\ldots H=\left(\begin{array}{ccc}1-\varepsilon & 0 & 0 \\ 0 & 2+\varepsilon & 0 \\ 0 & 0 & 2-\varepsilon\end{array}\right) \rightarrow H_{0}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right) \& H^{\prime}=\left(\begin{array}{ccc}-\varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & -\varepsilon\end{array}\right)$
What are the $1^{\text {st }}$-order energy corrections? $\ldots E_{1} \approx E_{1}^{(0)}+H_{11}^{\prime}=1-\varepsilon$, similarly $E_{2} \approx 2+\varepsilon$ and $E_{3} \approx 2-\varepsilon \boldsymbol{\sim}$ matches exact (b)
(d) No they do not! WHY NOT? And why did the $1^{\text {st }}$ order formulae work just fine in Question 1, where we ALSO had a pair of degenerate levels. What was different there?
(e) So this time, we must apply our degenerate-PT prescription to obtain $1^{\text {st }}$ order corrections for the degenerate states \#2 and \#3. Do that! Your first task is to immediately extract the degenerate subspace from the full problem --> extract rows \& columns \#2 \& \#3 from the matrices H_{0} and H^{\prime}, producing 2×2 sub-matrices. Once you have those two sub-matrices, follow the procedure we went through in the 2×2 example in class (see the lecture notes), or as described on the first page of this discussion. A list of progressive hints / steps is also provided in the footnote for this question. If you really don't want to do any matrix manipulations by hand, you might try out the wolframalpha command diagonalize; if you compare its output to the matrixtransformation formulae from the lecture notes, you will see that the matrix " S " it spits out is the " $\mathrm{R}-1$ " matrix from the notes, with columns equal to the eigenvectors of the input matrix (which it calls "M"). At the end of your work, you should have $1^{\text {st-order energy corrections for states } \# 2 \text { and \#3 that do match the exact values. }}$
(f) We have so far only on tested the PT corrections to the eigenvalues against the exact results we obtained from wolframalpha. What about the eigenvectors? The new basis vectors you found in (e) by diagonalizing H^{\prime} within the degenerate subspace $\{\# 2, \# 3\}$ should be the actual eigenvectors of the full $\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}^{\prime}$, accurate to first order in ε. Let's check. When you use wolframalpha's eigenvalues command, it usually gives you both eigenvalues and eigenvectors; otherwise, try the eigenvectors command. Verify that your new basis from part (e) does indeed match the exact eigenvectors of H , at least to $1^{\text {st }}$ order in ε.

Problem 3: A Second-Order Perturbation Theory Problem

A particle moves in a 3D SHO with potential energy $V(r)$. A weak perturbation $\delta V(x, y, z)$ is applied:

$$
V(r)=\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right) \quad \text { and } \quad \delta V(x, y, z)=U x y z+\frac{U^{2}}{\hbar \omega} x^{2} y^{2} z^{2}
$$

where U is a small parameter. Use perturbation theory to calculate the change in the ground state energy to order $O\left(U^{2}\right)$. Use without proof all the results you like from the 1D SHO \rightarrow see Formulae-SHO-reference.pdf on our website for the full collection.

- "zeroth-order" Hamiltonian $H_{0} \quad$ has exact eigenvalues $\left\{E_{n}^{(0)}\right\}$ and eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$
- actual Hamiltonian $H=H_{0}+H^{\prime} \quad$ where H^{\prime} is a small correction to H_{0} (a "perturbation", $H^{\prime} \ll H_{0}$)
- series expansion of H eigenvalues: $E_{n}=E_{n}^{(0)}+E_{n}^{(1)}+E_{n}^{(2)}+\ldots$ for each n, where $E_{n}^{(0)} \gg E_{n}^{(1)} \gg E_{n}^{(2)} \gg \ldots$
- series expansion of H eigenstates: $|n\rangle=\left|n^{(0)}\right\rangle+\left|n^{(1)}\right\rangle+\left|n^{(2)}\right\rangle+\ldots$ for each n, where $\left|n^{(0)}\right\rangle \gg\left|n^{(1)}\right\rangle \gg \ldots$

As long as the unperturbed eigenstates $\left\{\left|n^{(0)}\right\rangle\right\}$ are non-degenerate and the Hamiltonian $H=H_{0}+H^{\prime}$ has no explicit time-dependence, the corrections to the energy eigenvalues E_{n} and eigenstates $|n\rangle$ are given by

- $E_{n}^{(1)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle=H_{n n}^{\prime}=$ expectation value of H^{\prime} in the $n^{\text {th }}$ unperturbed state
- $\left|n^{(1)}\right\rangle=\sum_{m \neq n} \frac{H_{m n}^{\prime}}{E_{n}^{(0)}-E_{m}^{(0)}}\left|m^{(0)}\right\rangle$ where $H_{m n}^{\prime}$ is the matrix element $\left\langle m^{(0)}\right| H^{\prime}\left|n^{(0)}\right\rangle$
- $E_{n}^{(k)}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(k-1)}\right\rangle$ for higher orders \ldots which gives $E_{n}^{(2)}=\sum_{m \neq n} \frac{\left|H_{m n}^{\prime}\right|^{2}}{E_{n}^{(0)}-E_{m}^{(0)}}=\left\langle n^{(0)}\right| H^{\prime}\left|n^{(1)}\right\rangle$

