
Phys 487 Discussion 6 – Perturbation Theory: Non-Degenerate, Time-Independent
To calculate some of the multi-particle effects in atomic energy states, we turn to the study of approximation 
methods.  As you might imagine, this is a substantial segment of quantum mechanics as there are rather few 
systems that can be solved exactly for their energy eigenvalues and eigenstates!  Today, we will practice 
Perturbation Theory.  Below is a summary of what we derived in class. 

Suppose you have a Hamiltonian H0 that can be solved exactly for its eigenvalues and eigenstates. 

Now add a small perturbation H′ to H0.  The resulting Hamiltonian, H = H0 + ′H , is not exactly solvable for 
its eigenstates and eigenvalues … but we can approach the solution in the manner of a Taylor series: calculate 
smaller and smaller corrections to the exact eigenvalues and eigenstates, and approach the true values/states via 
a (probably infinite) series.  Here is the notation we will use : 

	 • “zeroth-order” Hamiltonian H0 		 has exact eigenvalues En
(0){ }  and eigenstates n(0){ }

	 • actual Hamiltonian H = H0 + ′H   	where ′H  is a small correction to H0 (a “perturbation”,  ′H ≪ H0 )

	 • series expansion of H eigenvalues: 	En = En
(0) + En

(1) + En
(2) + ...  for each n, where  En

(0) ≫ En
(1) ≫ En

(2) ≫ ...

	 • series expansion of H eigenstates:	 n = n(0) + n(1) + n(2) + ...  for each n, where  n
(0) ≫ n(1) ≫ ...

As long as the exact eigenstates n(0){ }  are non-degenerate and the Hamiltonian H = H0 + ′H  has no 
explicit time-dependence,  we get nice compact formulae for the 1st-order and 2nd-order corrections to each 
energy En.  First, let  H′mn denote the matrix elements of H′ in the unperturbed basis (the only basis we have) : 

	 	 ′Hmn = m(0) ′H n(0) .

Then the energy corrections are 

	 	 En
(1) = ′Hnn = n(0) ′H n(0) = the expectation value of the perturbation H′ in the nth exact state, and 

	 	 En
(2) =

′Hmn
2

En
(0) − Em

(0)
m≠n
∑     (we will derive this one in our next lecture). 

The 1st-order correction to each unperturbed eigenstate n(0)  is  n(1) = ′Hmn

En
(0) − Em

(0)
m≠n
∑ m(0) .

I only put the En
(1)  formula in a box since that is the only one we will use today.  

Problem 1 : Warmup Qual Problem	 Qual Problem (Colorado)

A particle of mass m is bound in a square well where −a / 2 < x < a / 2 .  

(a)  What are the energy and eigenfunction of the ground state? 

(b)  A small perturbation is added, V (x) = 2ε x / a  where ε << 1.  Use perturbation theory to calculate the 
change in the ground state energy to order O(ε).  

FAQ: Goodness, how can this simple problem be a qual problem?  No Formula Sheet, of course. ☺ ︎ You must 
know how to derive the formulae above in your sleep, like Taylor’s series!  But more practice first. 



Problem 2 : Two Identical Bosons in ∞ Well, now with a weak interaction 	 Griffiths 6.3

Two identical bosons are placed in an infinite square well with V = 0 from x = 0 to x = a, and V = ∞ everywhere 
else.  The bosons interact weakly with one another, via the potential

	 	 V (x1, x2 ) = −aV0δ (x1 − x2 )

where V0 is a constant with dimensions of energy.  

(a)  First, ignoring the interaction between the particles, find the ground state and the first excited state — both 
the wave functions and the associated energies.  (This is our standard Sandbox system, so by all means just 
write down what the single-particle wavefunctions without any/much derivation.) 

(b)  Use first-order perturbation theory to estimate the effect of the particle-particle interaction above on the 
energies of the ground state and the first excited state. 

Problem 3 : Qual Problem with Spin	 Qual Problem (MIT)

Consider two electrons bound to a proton by Coulomb interaction.  Neglect the Coulomb repulsion between the 
two electrons. 

(a)  What are the ground state energy and wave function for this system? 

(b)  Consider that a weak potential exists between the two electrons of the form 

	 	  V (
!r1 −
!r2 ) =V0 δ

3(!r1 −
!r2 )
!s1 ⋅
!s2

where V0 is a constant and  
!s j  is the spin operator for electron j (neglect the spin-orbit interaction) . 

Use first-order perturbation theory to estimate how this potential alters the ground state energy.


