Discussion 4 solutions by Eli Charlton

1. For the four closed-shell electrons in the 1s²2s² shells of Be,
 (a) \(L = 0 \Rightarrow \mathbf{L} = S, \ S = 0 \) and \(L = 0 \Rightarrow J = 0 \).
 Altogether, this means that the Be term symbol is \(2S+1L_J = 'S_0' \).

(b) For each of the two valence electrons of Carbon, there is a set of orbital angular momentum operators:

\[
\hat{\mathbf{L}} = \begin{pmatrix} \hat{\mathbf{l}}^x \\
\hat{\mathbf{l}}^y \\
\hat{\mathbf{l}}^z
\end{pmatrix} \quad \text{for electron 1}
\]
\[
\hat{\mathbf{L}} = \begin{pmatrix} \hat{\mathbf{l}}^x \\
\hat{\mathbf{l}}^y \\
\hat{\mathbf{l}}^z
\end{pmatrix} \quad \text{for electron 2}
\]

Since \(\hat{\mathbf{l}}^2 = \hat{\mathbf{l}}^x \hat{\mathbf{l}}^x + \hat{\mathbf{l}}^y \hat{\mathbf{l}}^y + \hat{\mathbf{l}}^z \hat{\mathbf{l}}^z \) and \(\hat{\mathbf{l}}^z \) commute, we can find simultaneous eigenstates \(\vert l_1, m_1 \rangle \) that obey
\[
\hat{\mathbf{l}}^z \vert l_1, m_1 \rangle = m_1 \vert l_1, m_1 \rangle
\]
\[
\hat{\mathbf{l}}^2 \vert l_1, m_1 \rangle = \hbar^2 L(l_1 + 1) \vert l_1, m_1 \rangle
\]

And same thing for operators \(\hat{\mathbf{l}}^2 = \hat{\mathbf{l}}^x \hat{\mathbf{l}}^x + \hat{\mathbf{l}}^y \hat{\mathbf{l}}^y + \hat{\mathbf{l}}^z \hat{\mathbf{l}}^z \) and \(\hat{\mathbf{l}}^z \) with states \(\vert l_2, m_2 \rangle \).

Since the two valence electrons of C are in the p orbital, we know that \(l_1 = l_2 = 1 \).

From the properties of angular momentum
operators and their eigenstates, we know that

\[m_{l_1} = -l_1, -l_1 + 1, \ldots, l_1 - 1, l_1 \]

\[= -l_1, 0, l_1 \]

\[m_{l_2} = -l_2, -l_2 + 1, \ldots, l_2 - 1, l_2 \]

\[= -l_2, 0, l_2 . \]

So, we have \(3^2 = 9 \) possible states for the two C electrons:

\[|l_1, m_{l_1} \rangle |l_2, m_{l_2} \rangle \equiv |m_{l_1}, m_{l_2} \rangle \]

\[= | -1, -1 \rangle, | -1, 0 \rangle, | -1, 1 \rangle, \]

\[| 0, -1 \rangle, | 0, 0 \rangle, | 0, 1 \rangle, \]

\[| 1, -1 \rangle, | 1, 0 \rangle, | 1, 1 \rangle. \]

(c) The operators \(\hat{L}^\alpha = \hat{L}_1^\alpha + \hat{L}_2^\alpha \) for \(\alpha = x, y, z \) are another set of angular momentum operators. Again, \(\hat{L}^2 = \hat{L}_1^2 + \hat{L}_2^2 + \hat{L}_3^2 \) and \(\hat{L}^\alpha \) commute and have simultaneous eigenstates \(|L, M_L \rangle \)

\[\hat{L}^2 |L, M_L \rangle = \hbar^2 L (L+1) |L, M_L \rangle \]

\[\hat{L}^\alpha |L, M_L \rangle = \hbar M_L |L, M_L \rangle. \]

Since \(\hat{L}^\alpha \) are total (orbital) angular momentum operators, their possible eigenvalues are constrained by the individual angular momentum eigenvalues.
In particular, for \(\hat{L}^2 = \hat{L}_1^2 + \hat{L}_2^2 \), the possible values for \(L \) are
\[
L = \left| \hat{L}_1 - \hat{L}_2 \right|, \ldots, \hat{L}_1 + \hat{L}_2.
\]
(\(\in \) steps of 1)

So, for \(\hat{L}_1 = \hat{L}_2 = 1 \), \(L \) can take the values
\[
L = 0, 1, 2.
\]

For a particular \(L \), the values of \(M_L \) are
\[
M_L = -L, -L + 1, \ldots, L - 1, L.
\]

If we list all the possibilities for \(\langle L, M_L \rangle \), we get
\[
L = 0, M_L = 0 : \quad 10, 0, 0
\]
\[
L = 1, M_L = -1, 0, 1 : \quad 11, -1, 11, 0, 11, +1
\]
\[
L = 2, M_L = -2, -1, 0, +1, 2 : \quad 12, -2, 12, -1, 12, 0, 12, +1, 12, +2
\]

which is 9 states. The \(\langle L_1, M_{L_1} \rangle \) and \(\langle L, M_L \rangle \) states both span the same 9-dimensional vector space.
(d) Using the Clebsch-Gordan table, we get that

\[(i)\]
\[12,2 \rangle_{LM} = \frac{1}{\sqrt{2}} |11,1\rangle \quad \{ L = 2 \}
\]
\[12,1 \rangle_{LM} = \frac{1}{\sqrt{2}} |11,0\rangle + \frac{1}{\sqrt{2}} |10,1\rangle \quad \{ L = 2 \}
\]
\[11,1 \rangle_{LM} = \frac{1}{\sqrt{2}} |11,0\rangle - \frac{1}{\sqrt{2}} |10,1\rangle \quad \{ L = 1 \}
\]
\[11,0 \rangle_{LM} = \frac{1}{\sqrt{2}} |11,-1\rangle - \frac{1}{\sqrt{2}} |10,-1\rangle \quad \{ L = 0 \}
\]
\[10,0 \rangle_{LM} = \frac{1}{\sqrt{3}} |10,-1\rangle - \frac{1}{\sqrt{3}} |10,0\rangle + \frac{1}{\sqrt{3}} |10,1\rangle \quad \{ L = 0 \}
\]

(ii) Written in terms of \(|m_1, m_2\rangle\), we can see that

\[12,2 \rangle_{LM}, 12,1 \rangle_{LM}\), and \[10,0 \rangle_{LM}\) (\(L=2,0\))

are symmetric and

\[11,2 \rangle_{LM}\) and \[11,0 \rangle_{LM}\) (\(L=1\))

are antisymmetric under exchange of electrons 1 and 2.

This agrees with the rules stated in the problem.
For the two \(p \) electrons of \(C \), \(l_1 = l_2 = 1 \).

(a) Since they are both electrons, they have spin \(\frac{1}{2} \).
So, \(s_1 = s_2 = \frac{1}{2} \).

For \(l_1 = l_2 = 1 \), total \(L \) can take on the values
\[L = |l_1 - l_2|, \ldots, l_1 + l_2 \]
\[= 0, 1, 2. \]
Likewise, for \(s_1 = s_2 = \frac{1}{2} \), total \(S \) can take on the values
\[S = |s_1 - s_2|, \ldots, s_1 + s_2 \]
\[= 0, 1. \]

Again by the same logic, total \(J \) can take on the values
\[J = |L - S|, \ldots, L + S. \]

The possibilities (and their term symbols) are

\[
\begin{align*}
L = 0, S = 0, J = 0 & \Rightarrow \ 'S_0 \quad (^1S) \\
L = 0, S = 1, J = 1 & \Rightarrow \ 'S_1 \quad (^3S) \\
L = 1, S = 0, J = 1 & \Rightarrow \ 'P_1 \quad (^1P) \\
L = 1, S = 1, J = 0, 1, 2 & \Rightarrow \ 'P_0, \ 'P_1, \ 'P_2 \quad (^3P) \\
L = 2, S = 0, J = 2 & \Rightarrow \ 'D_2 \quad (^1D) \\
L = 2, S = 1, J = 1, 2, 3 & \Rightarrow \ 'D_1, \ 'D_2, \ 'D_3 \quad (^3D)
\end{align*}
\]
Ignoring \(\mathcal{J} \), we get the six term symbols \('S, 3S, 'P, 3P, 'D, 3D \).

But some of these represent states that are symmetric under exchange of electrons 1 and 2. These are not valid fermionic states since fermionic states must be antisymmetric under exchange.

Consider the states \(|L, S\rangle \) corresponding to the \(L \) term symbol. These states are products of an orbital angular momentum part and a spin part.

By the logic of the previous problem, the largest \(L \) (or \(S \)) states are symmetric under exchange and then the lower \(L \) (or \(S \)) states alternate symmetric/antisymmetric as you decrease \(L \) (or \(S \)).

For example, in our case \(\nu \) (called a "triplet")

\[
\begin{align*}
L = 2 & \rightarrow \text{symmetric} \quad S = 1 \rightarrow \text{symmetric} \\
L = 1 & \rightarrow \text{antisymmetric} \quad S = 0 \rightarrow \text{antisymmetric} \\
L = 0 & \rightarrow \text{symmetric} \quad S \rightarrow \text{antisymmetric}
\end{align*}
\]

The only way to get antisymmetric \(|L, S\rangle \) states is by multiplying symmetric and antisymmetric
These states correspond to the 3 term symbols $\ ^1S,$ $\ ^1D$ and $\ ^3P.$

(b) Hund's rules tell you how to order the $1S, L, \ J \ J$ states in energy. Rule 1 tells you which S have lower energy. Rule 2 tells you which L have lower energy. Rule 3 tells you which J have lower energy.

Rule 1 says maximize $S.$ The largest possible S we can pick is $S=1,$ so $\ ^3P$ states are lowest in energy and $\ ^1S$ and $\ ^1D$ are higher in energy. Let's draw an energy level diagram to describe what Hund's Rule 1 told us:

```
\begin{tikzpicture}
    \node (S) at (0,0) {$\ ^1S,$ $\ ^1D,$ $\ ^3P$}
        child { node (D) {$\ ^1S,$ $\ ^1D$} }
        child { node (P) {$\ ^3P$} }
    \draw [->] (S) -- (D);
    \draw [->] (S) -- (P);
\end{tikzpicture}
```

Before Rule 1 \hspace{2cm} After Rule 1
(c) Rule 2 tells us to maximize \(L \). This means that \(^1D \) (with \(L=2 \)) is lower in energy than \(^1S \) (with \(L=0 \)). The diagram becomes:

\[
\begin{align*}
\text{\(^1S, ^1D, ^3P \)} & \quad \text{\(^1S, ^1D \)} \\
\text{Before Rule 1} & \quad \text{After Rule 1} & \quad \text{After Rule 2}
\end{align*}
\]

(d) Rule 3 tells us to minimize \(J \) if the shell is less than half full (which it is since 2 out of 6 electrons in the "p-shell" are filled). This means that lower \(J \) states have lower energy.

The diagram then becomes:

\[
\begin{align*}
\text{\(^1S, ^1D, ^3P \)} & \quad \text{\(^1S, ^1D \)} & \quad \text{\(^1S \)} & \quad \text{\(^1S_0 \)} \\
\text{Before Hund's rules} & \quad \text{After Rule 1} & \quad \text{After Rule 2} & \quad \text{After Rule 3}
\end{align*}
\]

This agrees with the neutral carbon (C I) entry in the NIST Atomic Spectra Database.