Discussion 4 solutions
by Eli Cherthor
(1) For the four closed-shell elections in the $1 s^{2} 2 s^{2}$ shells of $B e$,
(a) $L=0 \Rightarrow \mathscr{L}=S, S=0$ and $L=0 \Rightarrow J=0$.

Altogether, this means that the Be termsymbol is $\quad{ }^{2 S+1} \mathscr{L}_{J}={ }^{1} S_{0}$.
(b) For each of the two valence electrons of Carbon, there is a get of orbital angular momentum operators:
$\hat{l}_{1}^{x}, \hat{l}_{1}^{y}, \hat{l}_{1}^{z}$ for elector 1
$\hat{l}_{2}^{x}, \hat{l}_{2}^{y}, \hat{l}_{2}^{z}$ for electron 2 .
Since $\hat{l}_{1}^{2}=\hat{l}_{1}^{x^{2}}+\hat{l}_{1}^{2}+\hat{l}_{1}^{z 2}$ and \hat{l}_{1}^{z} commute, we can find simultaneous eigenstates $\left|\ell_{1}, m_{l_{1}}\right\rangle$
that obey

$$
\begin{aligned}
& \hat{l}_{1}^{2}\left|l_{1}, m_{l}\right\rangle=\hbar^{2} l_{1}\left(l_{1}+1\right)\left|l_{1}, m_{l_{1}}\right\rangle \\
& \hat{l}_{1}^{z}\left|l_{1}, m_{l_{1}}\right\rangle=\hbar m_{l_{1}}\left|l_{1}, m_{1}\right\rangle .
\end{aligned}
$$

And same thing for operators $\hat{l}_{2}^{2}=\hat{l}_{2}^{x^{2}}+\hat{l}_{2}^{2}+\hat{l}_{2}^{z^{2}}$ and \hat{l}_{2}^{z} with states $\left|l_{i}, m_{l}\right\rangle$.
Since the truro valence electrons of C are in the p orbital, we know that $l_{1}=l_{2}=1$.
From the properties of angular momentum
(lon) operators and their eigenstates, we know
(bon) that

$$
\begin{aligned}
m_{l_{1}} & =-l_{1},-l_{1}+1, \ldots, l_{1}-1, l_{1} \\
& =-1,0,1 \\
m_{l_{2}} & =-l_{2},-l_{2}+1, \ldots, l_{2}-1, l_{2} \\
& =-1,0,1 .
\end{aligned}
$$

So, we have $3^{2}=9$ possible states for the two C electrons:

$$
\begin{aligned}
\left|l_{1} m_{l_{1}}\right\rangle\left|l_{2} m_{l_{2}}\right\rangle= & \left|m_{l_{1}}, m_{l_{2}}\right\rangle \\
= & |-1,-1\rangle,(-1,0\rangle, 1-1,1\rangle, \\
& |0,-1\rangle,|0,0\rangle,|0,1\rangle \\
& |1,-1\rangle,|1,0\rangle, 11,1\rangle
\end{aligned}
$$

(c) The operators $\hat{L}^{\alpha}=\hat{l}_{1}^{\alpha}+\hat{l}_{2}^{\alpha}$ for $\alpha=x, y, z$ ane another set of angular momentum operators. Again, $\hat{L}^{2}=\hat{L}^{2}+\hat{l}^{2}+\hat{L}^{2}$ and \hat{L}^{2} commute and have simultaneous eigenstates $\left|L, M_{L}\right\rangle$

$$
\begin{aligned}
& \left.\hat{L}^{2}\left|L, M_{L}\right\rangle=\hbar^{2} L(L+1) / L, M_{L}\right\rangle \\
& \hat{L}^{z}\left|L, M_{L}\right\rangle=\hbar M_{L}\left|L, M_{L}\right\rangle
\end{aligned}
$$

Since \hat{L}^{α} are total (orbital) angular momentum operators, their possible eigenvalues are constrained by the individual angular momenta eigenvalues.

ICon In particular y for $\hat{L}^{\alpha}=\hat{l}_{1}^{\alpha}+\hat{l}_{2}^{\alpha}$, the possible (con) values for L ane

$$
L=\frac{\left|l_{1}-l_{2}\right|, \ldots, l_{1}+l_{2}}{\left(c_{\text {in steps of }} 1\right)}
$$

So, for $l_{1}=l_{2}=1$, L can take the values

$$
L=0,1,2
$$

For a particular L, the values of M_{L} are

$$
M_{L}=-L,-L+1, \ldots, L-1, L .
$$

If we list all the possibilities for $\left|L, M_{C}\right\rangle$, we get

$$
\begin{aligned}
L=0, M_{L}=0 & =|0,0\rangle \\
L=1, M_{L}=-1,0,+1= & |1,-1\rangle,|1,0\rangle, 11,+1\rangle \\
L=2, M_{L}=-2,-1,0,+1,2= & |2,-2\rangle,|2,-1\rangle,|2,0\rangle,|2,+1\rangle,|2,+2\rangle
\end{aligned}
$$

which is 9 states. The $\left|m e_{1}, m_{e_{2}}\right\rangle$ and $\left.\mid L, M_{L}\right)$ states both span the same 9-dimensional vector space.

Ton
(d) Using the Clebsch-Gordon table, we get that
(i)

$$
\left.\begin{array}{l}
|2,2\rangle_{L, M}=|1,1\rangle \\
|2,1\rangle_{L, M}=\frac{1}{\sqrt{2}}|1,0\rangle+\frac{1}{\sqrt{2}}|0,1\rangle \\
|1,1\rangle_{L M}=\frac{1}{\sqrt{2}}|1,0\rangle-\frac{1}{\sqrt{2}}|0,1\rangle \\
\left.|1,0\rangle_{L M}=\frac{1}{\sqrt{2}}|1,-1\rangle-\frac{1}{\sqrt{2}}|-1,1\rangle \quad \text { mutates }\right\} \\
\left.|0,0\rangle_{L M}=\frac{1}{\sqrt{3}}|1,-1\rangle-\frac{1}{\sqrt{3}}|0,0\rangle+\frac{1}{\sqrt{3}}|-1,1\rangle,\right\} L=1
\end{array}\right\}
$$

(ii) Written in terms of $\left.\operatorname{lm} l_{1}, m l_{2}\right\rangle$, we can see that

$$
|2,2\rangle_{L, M},|Z 1\rangle_{L, M}, \text { and }|0,0\rangle_{L, M} \quad(L=2,0)
$$

are symmetric and

$$
|1,1\rangle_{2, M} \text { and }|1,0\rangle_{L, m} \quad(l=1)
$$

are antisymmetric under exchange of electrons 1 and 2 ,

This agrees with the rules stated in the problem.
(2) For the two p electrons of $C, l_{1}=l_{2}=1$.
(a) Since they are both elections they have spin $1 / 2$. $s_{0} s_{1}=s_{2}=1 / 2$.

For $l_{1}=l_{2}=1$, total L can take on the values $L=\left|l_{1}-l_{2}\right|, \ldots, l_{1}+l_{2}$

$$
=0,1,2
$$

Likewise, for $s_{1}=s_{2}=1 / 2$, total S can take on the values $S=\left|s_{1}-s_{2}\right|, \ldots, s_{1}+s_{2}$

$$
=0,1 .
$$

Again by the same logic, total J can tate on the values $J=|L-S|, \ldots, L+S$.
The possibilities (and their term symbols) are

$$
\begin{array}{ll}
L=0, S=0, J=0 \Rightarrow{ }^{1} S_{0} & \left({ }^{1} S\right) \\
L=0, S=1, J=1 \Rightarrow{ }^{3} S_{1} & \left({ }^{3} S\right) \\
L=1, S=0, J=1 \Rightarrow P_{1} & \left({ }^{1} P\right) \\
L=1, S=1, J=0,1,2 \Rightarrow{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2}\left({ }^{3} P\right) \\
L=2, S=0, J=2 \Rightarrow{ }^{1} D_{2} & \left({ }^{1} D\right) \\
L=2, S=1, J=1,2,3 \Rightarrow{ }^{3} D_{1},{ }^{3} D_{2},{ }^{3} D_{3} \quad\left({ }^{3} D\right) \tag{}
\end{array}
$$

Icon Ignoring 5 , we get the six term (Icon) symbols S ' $S, 3 S$, $P,{ }^{3} P, 1 D,{ }^{3} D$.

But some of these represent states that are symmetric under exchange of electrons 1 and 2 . These are not valid fermionic states since femianic states must be antisymmetric under exchange.

Consider the states $|L, S\rangle$ corresponding to the $2 s+1 / 2$ term symbol. These states are products of an orbital angular momentum part and a spit-part.

By the logic of the previous problem, the largest L (or S) states are symmetric under exchange and then the lower L (or) states alternate symmetric/antisymmetric as you decrease L (or S).
For example, in our case
(called a "triplet")
$L=2 \rightarrow$ symmetric
$S=1 \rightarrow$ symmetric
$L=1 \rightarrow$ antisymmetric
$S=0 \rightarrow$ antisym.
$L=0 \rightarrow$ symmetric.
baled a "singlet")
The only way to get antisymmetric $|L, S\rangle$ states is by multiplying symmetric and antisymmetric
(con states together. This happens when
(Icon)

$$
L=1_{(\text {antisym })} \text { and } \quad S=1
$$

These states correspond to the 3 term symbols ${ }^{1} S,{ }^{1} D$ and ${ }^{3} P$.
(b) Hundis rules tell you how to order the $|S, L, \tau\rangle$ states in energy. Rule 1 tells you which S have lover energy. Rule 2 tells you which L have lower energy. Rule 3 tells you which J have lower energy?

Rule 1 says maximize S. The la gest possible S we can pick is $S=1$, so $3 P$ states are lowest in energy and ' S and $I D$ are higher in energyilet's draw an energy level diagram to describe what Hundis Rule 1 told us:

Energy
Before Rule 1
After Rule 1
(200) (c) Rule 2 tells us to maximize L. This means that ' $D($ with $l=2)$ is lower in energy than 'S (with $L=0$). The diagram be comes:

(d) Rule 3 tells as to minimize J if the shell is less than half full (which it is since 2 out of 6 electrons in the "p-shell" are filled).
This means that lower J states have lower energy.
The diagram then becomes:

This agrees with the neutral carbon (CI) entry in the NIST Atomic Spectra Database.

