2 Problem 2

(a) The phrase "a particle of spin s" does not mean that if you were to measure the particle’s spin in an experiment, you’d find that it’s equal to s! This is simply not true. Why? In experiments, we can only measure observables - specifically, eigenvalues of Hermitian operators. So to measure the spin of a particle in an experiment means finding the magnitude of its spin vector.

\hat{S}^2 is a Hermitian operator which has eigenvalue given by $\hbar^2 s(s + 1)$. The magnitude of the particle’s spin (which is what you can actually measure in an experiment) is $\hbar \sqrt{s(s + 1)}$. For $s = 1$, this is $\sqrt{2}\hbar$.

So the lesson here is that s is not an eigenvalue of a Hermitian operator - it’s just a quantum number, which you can use to label eigenstates (if the Hamiltonian commutes with the operator corresponding to that quantum number). Don’t confuse a quantum number with a measurable eigenvalue of a Hermitian operator!

(b) We are told that a particle is in a central potential with orbital angular momentum quantum number $l = 2$ and spin quantum number $s = 1$. Recall that from angular momentum addition, the possible values of the total angular momentum quantum number j are

\[j = |l - s|, |l - s| + 1, \ldots, l + s \]

subject to the rule that $m_j = m_l + m_s$ where $m_j = -j, -j + 1, \ldots, j - 1, j$ for each possible value of j.

For the values of l and s in this problem, we find that the possible values of j are $j = 1, 2, 3$. From equation (5), the eigenstates of \hat{H}_{s-o} are given by $|j l s m_j\rangle$. The eigenstates are therefore,

\begin{align*}
\text{j = 1 eigenstates} & \quad \{ |121 - 1\rangle, |1210\rangle, |1211\rangle \} \\
\text{j = 2 eigenstates} & \quad \{ |221 - 2\rangle, |221 - 1\rangle, |2210\rangle, |2211\rangle, |2212\rangle \} \\
\text{j = 3 eigenstates} & \quad \{ |321 - 3\rangle, |321 - 2\rangle, |321 - 1\rangle, |3210\rangle, |3211\rangle, |3212\rangle, |3213\rangle \}
\end{align*}

(7)

Notice that for each value of j, there are $2j + 1$ eigenstates (because there are $2j + 1$ values of m_j).

The energies $E_{j s l}$ in equation (5) are independent of m_j. This implies the $j = 1$ eigenstates are 3-fold degenerate, $j = 2$ eigenstates are 5-fold degenerate, and $j = 3$ eigenstates are 7-fold degenerate in energy. The energy eigenvalues are

\begin{align*}
\text{j = 1 eigenstates} & \quad E_{121} = \frac{\beta \hbar^2}{2} (1(1 + 1) - 2(2 + 1) - 1(1 + 1)) = -3\beta \hbar^2 \\
\text{j = 2 eigenstates} & \quad E_{221} = \frac{\beta \hbar^2}{2} (2(2 + 1) - 2(2 + 1) - 1(1 + 1)) = -\beta \hbar^2 \\
\text{j = 3 eigenstates} & \quad E_{321} = \frac{\beta \hbar^2}{2} (3(3 + 1) - 2(2 + 1) - 1(1 + 1)) = 2\beta \hbar^2
\end{align*}

(8)