2 Problem 2

(a) The phrase "a particle of spin s "does not mean that if you were to measure the particle's spin in an experiment, you'd find that it's equal to s ! This is simply not true. Why? In experiments, we can only measure observables - specifically, eigenvalues of Hermitian operators. So to measure the spin of a particle in an experiment means finding the magnitude of its spin vector.
\hat{S}^{2} is a Hermitian operator which has eigenvalue given by $\hbar^{2} s(s+1)$. The magnitude of the particle's spin (which is what you can actually measure in an experiment) is $\hbar \sqrt{s(s+1)}$. For $s=1$, this is $\sqrt{2} \hbar$.

So the lesson here is that s is not an eigenvalue of a Hermitian operator - it's just a quantum number, which you can use to label eigenstates (if the Hamiltonian commutes with the operator corresponding to that quantum number). Don't confuse a quantum number with a measurable eigenvalue of a Hermitian operator!
(b) We are told that a particle is in a central potential with orbital angular momentum quantum number $l=2$ and spin quantum number $s=1$. Recall that from angular momentum addition, the possible values of the total angular momentum quantum number j are

$$
\begin{equation*}
j=|l-s|,|l-s|+1, \ldots, l+s \tag{6}
\end{equation*}
$$

subject to the rule that $m_{j}=m_{l}+m_{s}$ where $m_{j}=-j,-j+1, \ldots, j-1, j$ for each possible value of j.
For the values of l and s in this problem, we find that the possible values of j are $j=1,2,3$. From equation (5), the eigenstates of $\hat{H}_{\text {s-o }}$ are given by $\left|j l s m_{j}\right\rangle$. The eigenstates are therefore,

$$
\begin{array}{ll}
j=1 \text { eigenstates } & \{|121-1\rangle,|1210\rangle,|1211\rangle\} \\
j=2 \text { eigenstates } & \{|221-2\rangle,|221-1\rangle,|2210\rangle,|2211\rangle,|2212\rangle\} \tag{7}\\
j=3 \text { eigenstates } & \{|321-3\rangle,|321-2\rangle,|321-1\rangle,|3210\rangle,|3211\rangle,|3212\rangle,|3213\rangle\}
\end{array}
$$

Notice that for each value of j, there are $2 j+1$ eigenstates (because there are $2 j+1$ values of m_{j}).
The energies $E_{j s l}$ in equation (5) are independent of m_{j}. This implies the $j=1$ eigenstates are 3-fold degnerate , $j=2$ eigenstates are 5 -fold degnerate, and $j=3$ eigenstates are 7 -fold degnerate in energy. The energy eigenvalues are

$$
j=1 \text { eigenstates } \quad E_{121}=\frac{\beta \hbar^{2}}{2}(1(1+1)-2(2+1)-1(1+1))=-3 \beta \hbar^{2}
$$

$$
\begin{equation*}
j=2 \text { eigenstates } \quad E_{221}=\frac{\beta \hbar^{2}}{2}(2(2+1)-2(2+1)-1(1+1))=-\beta \hbar^{2} \tag{8}
\end{equation*}
$$

$$
j=3 \text { eigenstates } \quad E_{321}=\frac{\beta \hbar^{2}}{2}(3(3+1)-2(2+1)-1(1+1))=2 \beta \hbar^{2}
$$

