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1. (a) Since the magnetic field components satisfy Bx = By = 0, we can simplify ~s · ~B = sxBx+
syBy + szBz = szBz. Thus

H = −γ~s · ~B = −γszBz = −γB0 cos(ωt)sz (1)

(b) There are two ways to do this problem.

The first is the long way, which is also the most general way that one expresses the matrix
of an operator in a particular basis. Given some operator A and an orthonormal basis
of n kets |j〉 where j = 1, . . . , n, the matrix elements of A in this basis are given by
(where Aij is the entry in the i-th row and j-th column):

Aij = 〈i|A|j〉

In this case, n = 2 and we fix |1〉 = |↑〉 and |2〉 = |↓〉, and one can calculate each of the
2× 2 = 4 matrix elements Hij . For instance,

H↑↓ = −γBz 〈↑ |sz| ↓〉 = γBz
~
2
〈↑ | ↓〉 = 0

The second way, which is also the easy way, is to notice that we already know the matrix
represntation of sz in the |↑〉 , |↓〉 basis. It’s exactly the pauli matrix σz. Thus,

Hij = −γB0 cos(ωt)(σz)ij (2)

(c) Because H is time-dependent, we cannot use the formula |ψ(t)〉 = exp(−iH~ t) |ψ(0)〉,
which is only valid when ∂

∂tH = 0. We have to directly solve the Schrodinger equation.
To do so, we first expand |ψ(t)〉 in the basis from (b):

|ψ(t)〉 = a(t) |↑〉+ b(t) |↓〉 (3)

∂t |ψ(t)〉 = ȧ(t) |↑〉+ ḃ(t) |↓〉 (4)

H |ψ(t)〉 = −γBz(a(t)sz |↑〉+ b(t)sz |↓〉) = −γBz
~
2

(a(t) |↑〉 − b(t) |↓〉) (5)

where the dot over a, b indicates the time derivative. We are now equipped to solve the
Schrodinger equation:

i~∂t |ψ〉 = H |ψ〉 =⇒ ȧ(t) |↑〉+ ḃ(t) |↓〉 = γBz
i

2
(a(t) |↑〉 − b(t) |↓〉) (6)
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Because |↑〉 and |↓〉 are independent of one another, this is really two separate equations:

ȧ =
iγBz

2
a

ḃ =
−iγBz

2
b

These are solved by separation of variable. For instance, solving for a,

da

dt
=
iγBz

2
a =⇒ da

a
=
iγB0

2
cos(ωt) dt =⇒ log a =

iωγB0

2
sin(ωt) + C (7)

=⇒ a = C exp

(
iωγB0

2
sin(ωt)

)
(8)

The constant C is fixed by the fact that a(0) = C = 1√
2
. The final answer is

|ψ(t)〉 =
1√
2

(
e
iωγB0

2
sin(ωt) |↑〉+ e

−iωγB0
2

sin(ωt) |↓〉
)

(9)

2. It is important to note that [sj , lk] = 0 for any j, l = 1, 2, 3. This is a consequence of the defi-
nitions: the spin operators sj act on ”internal” states of the electron that are distinct from the
electron’s motion (or, more precisely, spatial wavefunction), while the orbital operators lk act
on the spatial part of the wavefunction. They are both types of angular momentum because
they satisfy the same commmutation relations (the same “algebra,” in physics parlance) but
they are independent of one another. That algebra is

[li, lj ] = i~εijklk [si, sj ] = i~εijksk (10)

Also, we should review some commutator identities. The commutator is linear, so that [A+
B,C] = [A,C] + [B,C]. Moreover, if A and C commute, we have that [AB,C] = A[B,C]
(there is a more general formula that you can either derive for yourself or find on Wikipedia).

(a) I’ll do the calculation for l3 only; the one for s3 is identical.

[H, l3] = [H0 + β~l · ~s, l3] = [H0, l3]︸ ︷︷ ︸
=0

+β[~l · ~s, l3] = β[l1s1 + l2s2 + l3s3, l3] (11)

Now, l3 commutes with all the sj and also with itself. Thus we get

[H, l3] = β(s1[l1, l3] + s2[l2, l3]) = i~β(−s1l2 + s2l1) 6= 0 (12)

(b) We will use index notation v · w = vjwj in this problem. Thus l2 = lklk.

[H, l2] = β[~l · ~s, l2] = β[ljsj , lklk] = βsj [lj , lklk] = 0 (13)

where the final equal sign follows from the fact that [lj , l
2] = 0 for any j = 1, 2, 3.

3. The quantities ml and ms are not good quantum numbers, as the operators they are associated
with (respectively, l3 and s3) do not commute with the Hamiltonian.



4. Note that j2 = l2 + s2 + ljsj + sjlj = l2 + s2 + 2ljsj , all of which commute with the original
Hamiltonian H0. We can then calculate

[H, j2] = β[ljsj , j
2 + s2 + 2lksk] = β(0 + 0 + 2[ljsj , lksk]) = 0 (14)

The first two terms are zero by part (b), and the last term is zero because it is the commutator
of an operator with itself.

Now, for the second operator j3 = l3 + s3, we also can see that [H0, j3] = 0. Thus,

[H, j3] = β[ljsj , l3 + s3] = β(sj [lj , l3] + lj [sj , s3]) = i~β(εj3ksjlk + εj3kljsk) (15)

= i~β(εj3ksjlk − εk3jsklj) (16)

= i~β(εj3ksjlk − εj3ksjlk) = 0 (17)

In going from line (15) to line (16), we used the antisymmetry of the ε symbol to switch the
j and k indices in the second term, introducing a minus sign. Going from (16) to (17), we
relabeled the dummy indices in the second term (any index that is summed over is a so-called
“dummy” index because it doesn’t matter what symbol you assign it, as long as you don’t
assign it to two different sums in the same term).


