(A) The original potential is:

$$
\hat{V}(x)= \begin{cases}0 & 0<x<a \\ \infty & \text { elsewhere }\end{cases}
$$

The orignal energy eigenstates are:

$$
\psi_{n}(x)= \begin{cases}\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) & 0<x<a \\ 0 & \text { elsewhere }\end{cases}
$$

The original energy eigenvalues are:

$$
\begin{equation*}
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{16}
\end{equation*}
$$

In this system, we take $n=1,2,3, \ldots$. The system starts out in the ground state, $n=1$. The potential suddenly changes:

$$
\hat{V}^{\prime}(x)= \begin{cases}0 & 0<x<2 a \\ \infty & \text { elsewhere }\end{cases}
$$

The new energy eigenstates are:

$$
\psi_{n}^{\prime}(x)= \begin{cases}\sqrt{\frac{2}{2 a}} \sin \left(\frac{n \pi}{2 a} x\right) & 0<x<2 a \\ 0 & \text { elsewhere }\end{cases}
$$

The new energy eigenvalues are:

$$
\begin{equation*}
E_{n}^{\prime}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m(2 a)^{2}} \tag{17}
\end{equation*}
$$

We need to construct the old ground state, $\psi_{1}(x)$, as a linear combination of the new energy eigenstates:

$$
\begin{equation*}
\psi_{1}(x)=\sum_{n=1}^{\infty} c_{n}^{\prime} \psi_{n}^{\prime}(x) . \tag{18}
\end{equation*}
$$

The coeffecients are

$$
\begin{align*}
c_{n}^{\prime} & =\int_{-\infty}^{\infty} \psi_{n}^{\prime}(x) \psi_{1}(x) d x \tag{19}\\
& =\int_{-\infty}^{0} \psi_{n}^{\prime}(x) \psi_{1}(x) d x+\int_{0}^{a} \psi_{n}^{\prime}(x) \psi_{1}(x) d x+\int_{a}^{\infty} \psi_{n}^{\prime}(x) \psi_{1}(x) d x \\
& =\frac{\sqrt{2}}{a} \int_{0}^{a} \sin \left(\frac{n \pi}{2 a} x\right) \sin \left(\frac{\pi}{a} x\right) d x \\
& =\frac{\sqrt{2}}{a} \int_{0}^{a}\left(\frac{e^{i \frac{n \pi}{2 a} x}-e^{-i \frac{n \pi}{2 a} x}}{2 i}\right)\left(\frac{e^{i \frac{n \pi}{a} x}-e^{-i \frac{n \pi}{a} x}}{2 i}\right) d x \\
& =-\frac{1}{2 \sqrt{2} a} \int_{0}^{a}\left(e^{i \frac{3 n \pi}{2 a} x}-e^{i \frac{n \pi}{2 a} x}-e^{i \frac{n \pi}{2 a} x}+e^{i \frac{3 n \pi}{2 a} x}\right) d x \tag{20}
\end{align*}
$$

These terms can be integrated and then turned back into trig fuctions for easy evaluation. The end result is

$$
P_{n}^{\prime}=\left|c_{n}^{\prime}\right|^{2}= \begin{cases}\frac{1}{2} & n=2 \\ \pm \frac{4 \sqrt{2}}{\pi\left(n^{2}-4\right)} & n \text { odd } \\ 0 & \text { otherwise }\end{cases}
$$

The most probable result of an energy measurement is $E_{2}^{\prime}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$, with a probability of $P_{2}^{\prime}=50 \%$.
(B) The next most probable result is $E_{1}^{\prime}=\frac{\pi^{2} \hbar^{2}}{8 m a^{2}}$, with a probability of $P_{1}^{\prime} \approx 36 \%$.
(C) The expectation value of the Hamiltonian for this state is

$$
\begin{align*}
<H>_{\psi_{1}} & =\int_{-\infty}^{\infty} \psi_{1}^{*}(x) \hat{H} \psi_{1}(x) d x \tag{21}\\
& =\frac{2}{a} \int_{0}^{a} \sin \left(\frac{\pi}{a} x\right)\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\right) \sin \left(\frac{\pi}{a} x\right) d x \\
& =\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}, \tag{22}
\end{align*}
$$

which is the same as before the potential was altered. The calculation makes this obvious.

