
Phys 487 Discussion 2 – Essential Skills

Problem 1 : Time Evolution	 adapted from Griffiths 2.38 1

The energy eigenstates of an infinite square well that extends from x = 0  to  x = a are :
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a
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At times t < 0, a particle of mass m sits in the ground state of an ∞ well with the very convenient width a = 1.

At time t = 0, the well suddenly expands to twice its original size: the right wall moves from a to 2a so quickly 
that it leaves the particle’s wavefunction undisturbed at time t = 0+.  This is called the sudden approximation: 
a system’s Hamiltonian changes so quickly that, for a brief moment, the system’s wavefunction doesn’t have 
time to react significantly.  (We will revisit this approximation in more detail later on in the course.)

At time t = 0+, the energy of the particle is measured.  

(a)  What is the most probable value of the measured energy, and what is the probability of getting that result?
▶ HINT 1:  Project! Onto! Eigenstates!        ▶ HINT 2 & checkpoints: see footnotes.  

(b)  What is the next most probably result, and what is its probability? 

(c)  What is the expectation value of the energy? 

(d)  OK enough with the energy measurements.  Restart the same experiment.  At time t = 0+, the particle is in
initial state ψ (x,t = 0+) ≡ψ 0 (0) = 2 sin π x( )  and is sitting in a double-sized well that runs to x = 2a = 2.  
How does the wavefunction evolve with time, i.e. what is Ψ(x,t)  for times t > 0?  
▶ HINT 1:  Your answer should be a big integral that you should IN NO WAY attempt to compute.  (Computers 
enjoy doing that part. ☺︎) 
▶ HINT 2:  If you’re attempting to solve the Schrödinger equation from scratch … well, re-deriving the 
procedure you need is fabulous … here’s a hint: “separation of variables” … but perhaps you can recall our 
procedure for calculating the time-evolution of a wavefunction when the Hamiltonian is independent of time 
(which is the only case we covered in 486).
… hint 2′ : Project! Onto! Eigenstates! ☺︎ 
… hint 2′′ : Project what? → the initial wavefunction ψ(x, t=0+)
… hint 2′′′ : Project onto which eigenstates? → onto the eigenstates of ______ because YOU KNOW THEIR 
                    TIME DEPENDENCE.  
… hint 2′′′′ : The Schrödinger equation controls the time-evolution of wavefunctions.  What observable 
                     appears in the Schrödinger equation?  That one observable is what goes in the blank above.  
                     You absolutely know the time-dependence of the eigenstates of that very important observable.

1 Q1 (a) HINT 2: From your memory / the 486 formula sheet, the master probability formula : Prob (q) = eq ψ
2 .

      Answer: The most probably energy is E′2 = π²ℏ² / 2m, with probability 50%.  (b) The next most probable value is E′1 = π²ℏ² / 8m, 
      with probability ≈ 36%.  (c)  〈H〉 = π² ℏ² / 2m.   (d)  HINT 2′′′ blank is the Hamiltonian.  The energy eigenstates | E 〉 of a 

      time-independent Hamiltonian (which is all we treated in PHYS 486)  have a very simple time-dependence:  
      | E(t) 〉 = | E 〉 e− iω t  where ω = E / ℏ.   Soooo, the time-dependent wavefunction is always 

 
Ψ(t ) = e− iEt /! E E ψ 0

E
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     For this particular situation, it is 
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Problem 2 : Commutators, Symmetries, and Conserved Quantities	 adapted from Griffiths 3.38

The Hamiltonian for a certain 3-level system is represented by this matrix: 
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where ω is a positive real number.  Two other observables, A and B, are represented in the same basis as the 
matrices  

	 	 A = λ
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where λ and μ are positive real numbers.

(a)  Compute the commutators [H, A] and [H, B].  
Thing #1 to recall: If an operator Q commutes with the Hamiltonian of a system (i.e. if [Q, H] = 0), then Q is 
called a symmetry of the system.  Is either A or B a symmetry of our 3-level system?  

(b)  The system starts out at time t = 0 in a generic normalized state ψ (0) =
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 where 
c1

2 + c2
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2 = 1 .  Compute the expectation values of A and B at t = 0.  

(c)  Find the time-evolved state ψ (t) .  Compute the expectation values of A and B at time t > 0.   
Thing #2 to recall:  If an observable Q commutes with the Hamiltonian of a system then Q is conserved i.e.: 
	 ● Its expectation value 〈Q〉 is a constant of motion
	 ● If you put the system in an eigenstate of Q , it will remain in that eigenstate. 

(d)  The observable B has an eigenvector µ =
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 with eigenvalue μ.  

Show that if ψ (0) = µ  at time t = 0, then the time-evolved state ψ (t) ~ µ  for all times t > 0, where 
“~” means “proportional to”.  

▶  WHAT THIS DEMONSTRATES:  You found earlier that the operator B is a symmetry of our Hamiltonian. 
That means B is a conserved quantity, and so its eigenvalues thus provide good quantum numbers for the 
system.  If a system is in an eigenstate of a symmetry operator, it will remain in that eigenstate over time and 
will always have the same quantum number → that’s what we mean by a good quantum number.


