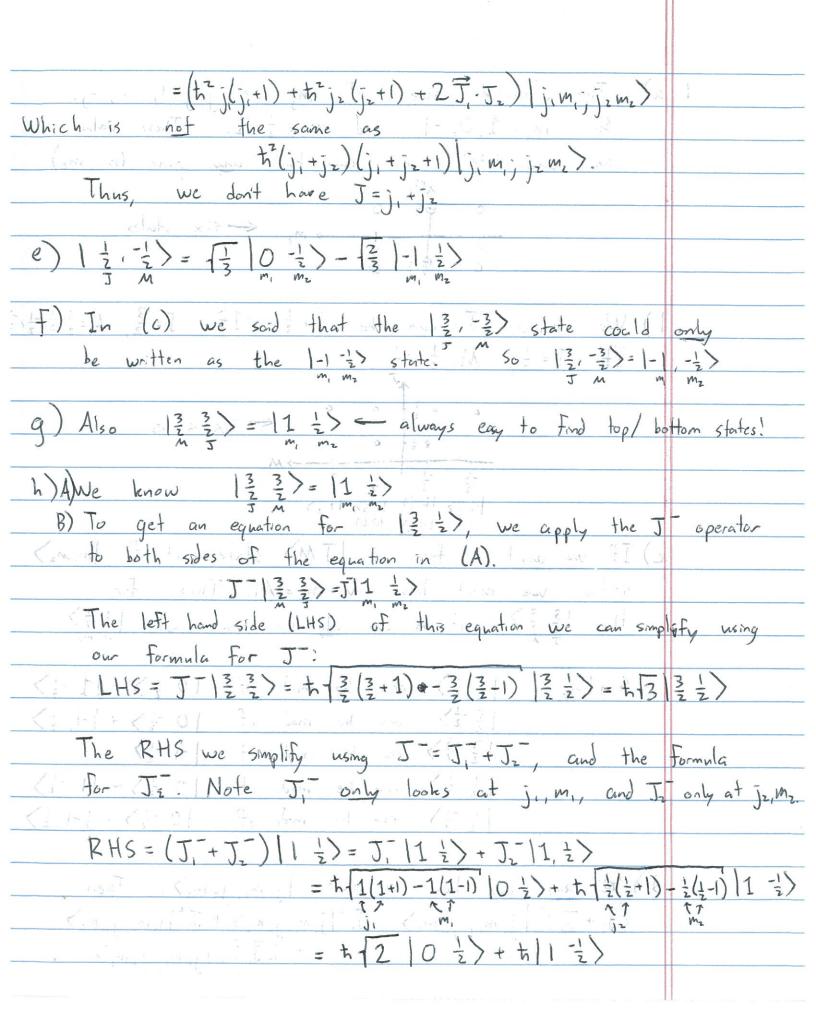
1	a) The allowed values + of m; are j, j=1,, -j.
	So $m_1 = 1, 0, -1$, and $m_2 = \frac{1}{2}\sqrt{2}$. These values \sqrt{W}
	are uncorrelated, we can have any pair (m, mz)
	Thus we don't best out and T
	O Di O m - six states
	mz six states
	2004 Total Control Dept. 12
y/-es	b) We know (J can the 3, 2, 2 If J=3, M=3(2, 1/2, 2.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1-1-IF , I = 200 M= 2/1872 (3-1-1 sold as nothing of
	*
Lester's must	bid by 1 bout of was examine of 1 1 the six states and (p
	- t t t > M
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	T Al 1/10 W (=1-128 102) - of nothings we sp . T (8
	c) If we want to form a IJM) state out of Im, m2)
	states, we must have In, +m2 = M. Thus, For
- you vi	the 13 3), it a can only be made of 11/2.
	our transle for July
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Similarly, 1/3/2> (dan be made of 10 2)+11-2>
	$\left \frac{3}{2}\right ^{\frac{1}{2}}$ can be made of $\left 0\right ^{\frac{1}{2}} + \left -1\right ^{\frac{1}{2}}$
	sit has The Town be made not with sit
My to doe	T () 1 = 2 > con be made of 10 => + 1 -2>
	$\left \frac{1}{2}-\frac{1}{2}\right\rangle$ can be made of $\left 0-\frac{1}{2}\right\rangle+\left -1-\frac{1}{2}\right\rangle$
11 15 1	RHS = (T+T) 1 =
(to 1) (1- 1) =	d) the Say we have a state [j, m; j, m,). Then
,01	$(J_1 + J_2)^2 j_1 m_1 j_2 m_2 \rangle = J_1^2 j_1 m_1 j_2 m_2 \rangle + J_2^2 j_1 m_1 j_2 m_2 \rangle$
-	(= 1/A+ (= 0) S+A=+ 2J,-J, Ij, m; jzmz)



Finally, we already know $\left|\frac{3}{2}, -\frac{3}{2}\right\rangle = \left|-1 - \frac{1}{2}\right\rangle$. But if we wanted, we could get this result by again applying J- to both sides.

() Now, we want to find 12, 2). From our work above, we know $\left|\frac{3}{2},\frac{1}{2}\right\rangle = \left|\frac{7}{3}\right|0\frac{1}{2}\right\rangle + \left|\frac{1}{3}\right|1-\frac{1}{2}\right\rangle$. From (c), we also know that 12, 2> = A 10 2> + B 11, -2> for some A and B.

Finally, we know $\left(\frac{3}{2},\frac{1}{2}\right)+\left(\frac{1}{2},\frac{1}{2}\right)$ must be orthogonal, b/L they are eigenstates of Jz w/ different eigenvalues. Thus,

gen states of
$$J = M$$
 althorn $O = \langle \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle = \langle \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \rangle = \langle \frac{3}{2}, \frac{1}{2}, \frac{1}{2},$

then find $B = -\sqrt{2}A$. Since $A^2 + B^2 = 1$ to normalize, we then has $A^2 + 2A^2 = 1$, or $A = \frac{1}{15}$, $B = -\frac{12}{15}$.

We thus have 13, 3>= 13/02>- 13/1 2>

We foured this out using only orthonormality.

Finally, we can find $|\frac{1}{2}, \frac{1}{2}\rangle$ by applying T to both sides of our $|\frac{1}{2}\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}(T_1 + T_2)|0|\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}(T_1 + T_2)|1|-\frac{1}{2}\rangle$ $\frac{1}{4}\sqrt{\frac{1}{2}(\frac{1}{2}+1)-\frac{1}{2}(\frac{1}{2}-1)}|\frac{1}{2}-\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}T_1 - |0|\frac{1}{2}\rangle + \sqrt{\frac{1}{3}}T_2 - |0|\frac{1}{2}\rangle - \sqrt{\frac{1}{3}}T_1 - |1|-\frac{1}{2}\rangle - \sqrt{\frac{2}{3}}T_2 - |1|-\frac{1}{2}\rangle$ $\frac{1}{2}-\frac{1}{2}\rangle = \sqrt{\frac{1}{3}}\sqrt{\frac{1}{1}(1+1)-\frac{1}{2}(1-1)}|0|-\frac{1}{2}\rangle + \sqrt{\frac{1}{3}}\sqrt{\frac{1}{2}}\sqrt{$

Problem 2 → Homework