Phys 486 Discussion 14 - Angular Momentum Addition : Clebsch-Gordan Coefficients

We are learning how to add two angular momenta, j_{1} and j_{2}. We can add them in two ways: we can

- list all the eigenstates $\left|m_{1} m_{2}\right\rangle$ of the operators $j_{1 z} \& j_{2 z}$ of the INDIVIDUAL ang. momenta, OR
\bullet list all the eigenstates $|J M\rangle$ of the TOTAL ang. mom. operators $J^{2} \equiv\left|\vec{j}_{1}+\vec{j}_{2}\right|^{2} \& J_{z} \equiv\left(j_{1 z}+j_{2 z}\right)$.
The eigenstates $\left|m_{1} m_{2}\right\rangle$ and $|J M\rangle$ provide different bases with which to describe the sum of one angular momentum j_{1} with another one j_{2}. In class, we learned how to read tables of Clebsch-Gordan coefficients to express a $|J M\rangle$ as a linear combination of $\left|m_{1} m_{2}\right\rangle$'s. These tables are now on our website, filename Formulae-CGtables.pdf. In this discussion, we will learn how to calculate the CG coefficients so that we understand exactly what they are, and where they come from, and that the scary-looking CG tables are not in the least bit mysterious.

Problem 1 : Deuterium Atom

We'll continue to explore our example from class, which was to add these two angular momenta:

- $j_{1}=1$ is the $\operatorname{spin} s_{d}$ of a deuterium nucleus (a.k.a. a "deuteron")
- $j_{2}=1 / 2$ is the spin s_{e} of an electron.

If we bring the deuteron and electron together, we get a deuterium atom with total spin $j_{1} \oplus j_{2}$. The " \oplus " symbol means "an addition that's more complex than $2+3=5$ ". As we discussed, " $j_{1} \otimes j_{2}$ " is also used.
(a) Make a plot with the m_{1} axis pointing upward and the m_{2} axis pointing sideways, and mark with solid circles all the points $\left(m_{1}, m_{2}\right)$ where $\left|m_{1} m_{2}\right\rangle$ is a physically-possible state. How many states do you have?
(b) Make a plot with the J axis pointing upward and the M axis pointing sideways, and mark with solid circles all the points (J, M) where $|J M\rangle$ is a physically possible state. Leave lots of space between your tick marks on the horizontal (M) axis ... like an inch of space \ldots. we're going to write things under these tick marks. To make your plot, you need the first of the two angular momentum addition rules we learned today:
(1) The total J quantum number runs from $\left|j_{1}-j_{2}\right|$ to $\left|j_{1}+j_{2}\right|$ in steps of 1 .
(2) The total M quantum number is additive: $M=m_{1}+m_{2}$.

You also need the rule restricting the m quantum number for any angular momentum:

- The m (or M, or m_{2}, \ldots) quantum number runs from $-j$ to $+j$ (or $-J$ to $+J$, or $-j_{2}$ to $+j_{2}, \ldots$) in steps of 1 . How many states do you have? It should be the same as in part (a)!
(c) Underneath each of the M tick marks that has at least one solid circle above it - i.e. under each M value that has at least one valid $|J M\rangle$ eigenstate - write a list of all the $\left|m_{1} m_{2}\right\rangle$ states that might contribute to said M value. HINT: You need the second of our two angular momentum addition rules.
(d) As we discussed, $m_{1}+m_{2}=M$, but $j_{1}+j_{2} \neq J$. The m quantum number is additive, but the j quantum number is not. Do you understand why this is? If not, check the hint ${ }^{1}$... if it's still unclear, ask!!!

[^0](e) Consult the Clebsch-Gordan tables on the web and write the eigenstate $|J, M\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{J, M}$ as a linear combination of $\left|m_{1}, m_{2}\right\rangle$ eigenstates.
(f) Consult nothing and write the $\left|\frac{3}{2},-\frac{3}{2}\right\rangle_{J, M}$ eigenstate as a linear combination of $\left|m_{1}, m_{2}\right\rangle$ eigenstates.
(g) You just realized that the $|J, M\rangle$ states $\left|\frac{3}{2}, \pm \frac{3}{2}\right\rangle_{J, M}$ each match a SINGLE $\left|m_{1}, m_{2}\right\rangle$ state: $\left| \pm 1, \pm \frac{1}{2}\right\rangle_{m_{1}, m_{2}}$.

These are called stretched states because all j vectors are maximally aligned along or against the z axis. The stretched states should be found at the top-right and top-left corners of the (M, J) plot you've been making. Circle the stretched state with positive M. This will be the starting point for our Clebsch-Gordan calculations because it is always uniquely determined : $\left|J_{\max }, M_{\max }\right\rangle=\left|m_{1 \max }, m_{2 \max }\right\rangle=\left|+j_{1},+j_{2}\right\rangle$. Simple starting point!
(h) THE WHOLE THING: Here is the procedure for building all the $|J, M\rangle$ states from $\left|m_{1}, m_{2}\right\rangle$ states, and thereby calculating all the Clebsch-Gordan (CG) coefficients for the given j_{1} and j_{2} values:
A. Build the stretched state $\left|J_{\text {max }}, M_{\text {max }}\right\rangle=$ top-right point on your plot.
B. Build the states with the same J but lower M - step to the LEFT on your plot - by applying the step-down operator $J_{-}=j_{1-}+j_{2_{-}}$. This step has two parts:

1. use $\hat{J}_{ \pm}|j, m\rangle=\hbar \sqrt{j(j+1)-m(m \pm 1)}|j, m \pm 1\rangle \rightarrow$ apply J_{-}to the $|J, M\rangle$ form
2. use the concept $\hat{Q}_{1+2}=\hat{Q}_{\text {lonly }}+\hat{Q}_{\text {2only }} \quad \rightarrow$ apply $J_{-}=j_{1-}+j_{2-}$ to the $\left|m_{1}, m_{2}\right\rangle$ form

Step-down until you have filled in the whole line with the J you are currently working on. Check the CG tables on the course website \rightarrow are your answers correct?
C. Go back to the right-hand-side of the J line you've just completed, move one step to the left, to $|J, J-1\rangle_{J, M}$, then move DOWN one step and build $|J-1, J-1\rangle_{J, M}$ using orthonormality.

How does that work exactly? \rightarrow Look at the list of $\left|m_{1} m_{2}\right\rangle$ states you wrote below this M column, and you'll see that there are exactly the same number of them as there are $|J M\rangle$ states in the column. It must be so. This whole exercise is a change of basis: we are building an orthonormal basis $|J M\rangle$ from a different orthonormal basis $\left|m_{1} m_{2}\right\rangle$. The states with a particular M value - call it M_{0} - are a subset of both bases, satisfying $M=M_{0}$ on the one hand and $m_{1}+m_{2}=M_{0}$ on the other hand. The number of $\left|m_{1} m_{2}\right\rangle$ states in this subspace must be the same as the number of $|J M\rangle$ states since both sets span the same subspace. Now realize that you have already built all but one of the $|J M\rangle$ states in this column. Since you only have one left, and you know all the $\left|m_{1} m_{2}\right\rangle$ states you can use to build it, you can build the final $|J M\rangle$ state in the column by making it orthonormal to the other $|J M\rangle$ states in the column. Get the idea? You will when you try it!

Repeat steps B and C until all the states $|J M\rangle$ are written as linear combinations of the states $\left|m_{1} m_{2}\right\rangle$. The figure at right may help you to visualize the procedure:
A. START at stretched state with maximum M
B. move LEFT via step-down operator $J_{-}=j_{1-}+j_{2-}$
C. move DOWN at bottom of a column via orthonormality

Add a spin-3/2 particle and a spin-1 particle to build the state $|J, M\rangle=\left|\frac{3}{2},+\frac{1}{2}\right\rangle_{J, M}$ from $\left|m_{1}, m_{2}\right\rangle$ states.
Calculate the result using the A, B, C procedure above, doing only the steps you need (!!!) to reach the state you want. Check your answer against the CG table on the website, of course.

[^0]: ${ }^{1} j$ and m are quantum numbers. They label the eigenvalues of certain operators, but they are not eigenvalues. (For a more familiar example, recall the energy quantum number n : it's an integer that labels energy eigenvalues but it is not an energy itself; we derived formulae like $E_{n}=-13.6 \mathrm{eV} / n^{2}$ to relate n to the corresponding eigenvalue E_{n}. The relations between $j \& m$ and the e-values they label are: $\hat{j}_{z}|j m\rangle=\hbar m|j m\rangle$ and $\hat{j}|j m\rangle=\hbar \sqrt{j(j+1)}|j m\rangle$. The m eigenvalue is linear in m, therefore m 's are additive.

