
Physics 486 Discussion 13 – Spin

Now that we’ve added the electron’s spin = intrinsic angular momentum to its orbital angular momentum 
(OAM), we are able to write down a complete description of an electron wavefunction.  The ket nl ml ms
completely describes an electron in an eigenstate of the five commuting operators Ĥ , L̂2 , L̂z , Ŝz , &  Ŝ2 .
We usually leave the quantum number s = ½ out of the ket since its value is a fixed, intrinsic property of the 
electron (just as we leave out the fixed mass and charge of the electron.) 

In QM, all of the results we obtained for angular momentum using the operator 
 

!̂
L = !̂r × !̂p = !r × −i"

!
∇( )  are

directly copied over from OAM to spin.  Commutators, eigenvalues, ladder operators, everything is simply 
copied from the orbital case to the spin case … and it works.  It may be argued that this is another QM axiom. 
Let’s first summarize these results, with a focus on spin-½ particles.  In the problems, you will work and derive
the new items, which are the matrix representations of the spin operators.  The operators for spin can only be
represented in matrix notation since we have no coordinates like x,y,z or r,θ,φ with which to describe the 
intrinsic, internal angular momentum of an elementary particle.  (We’re not 100% sure what it is, honestly, 
it just behaves exactly like another form of angular momentum.)  With no internal coordinates, there is no way 
to build any differential operators, so it’s matrix-representation-only for the spin sector. 

Spin Summary

The eigenvalue equations for the complete electron eigenstates nl ml ms  are :

Ĥ nl ml ms = En nl ml ms  where the energy function En depends on the system (i.e. on  V (
!r ) ),

L̂2 nl ml ms = !2l(l +1) nl ml ms ,	 L̂z nl ml ms = !ml nl ml ms ,

 Ŝ
2 nl ml ms = !2s(s +1) nl ml ms ,	  Ŝz nl ml ms = !ms nl ml ms

Any electron wavefunction can be written as a superposition of the eigenstates nl ml ms , where the allowed
values of the quantum numbers n, l, ml, ms are restricted in ways that may be system-dependent : 

n = 0, 1, 2,...                           for 3D-SHO; n = 1, 2, 3,...           for atomic e–;          etc
l = n, n − 2, n − 4, ... (0 or 1)  for 3D-SHO; l = 0, 1, 2, ..., n −1  for atomic e–;         etc
ml = −l, − l +1, ..., + l
ms = −s, − s +1, ..., + s which for a spin-½ particle is ms = − 1

2
, + 1

2

For a system with a central potential V(r), the wavefunction for each eigenstate nl ml ms  separates neatly into
radial R(r) and angular Y(θ,φ) parts … and now an equally separate spin part χ :

wavefunction er,θ ,φ nl ml ms = Rnl (r) Y l
ml (θ ,φ) χms

The spin part χ is called a spinor; it represents the electron’s Sz value, i.e. the orientation of its spin.  As we 
discussed in class, spin does not depend on any spatial coordinates (x,y,z) or (r,θ,φ), so any operators that act on 
χ cannot be differential operators like  p̂x = −i!∂/ ∂x  or  

!̂
L = !r × (−i"

!
∇) .  Instead, we represent the spinor and

the operators that act on it in matrix form.  First we pick an ordered basis for our matrix representation.  
For a spin ½ particle, there are only two states: spin up (ms = +½) and spin down (ms = –½) along our chosen 
quantization axis ẑ .  Take spin-up to be the first basis state, and spin-down to be the second :



	 	 basis spinors are      spinup : χ+ ≡ 1
2

+ 1
2 s,ms

≡ 1
0

⎛
⎝⎜

⎞
⎠⎟

       &     spindown :  χ− ≡ 1
2

− 1
2 s,ms

≡ 0
1

⎛
⎝⎜

⎞
⎠⎟

,

Now that we have our basis, we can write down the operators for S2  and Sz  in matrix form, as well as the step-
up and step-down operators S+ and S– :

	 	
 
S2 = 3

4
!2 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

,        
 
Sz =
!
2

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

,       
 
S+ = ! 0 1

0 0
⎛
⎝⎜

⎞
⎠⎟

,      
 
S– = !

0 0
1 0

⎛
⎝⎜

⎞
⎠⎟

.    

As you will see shortly, these are very easy to figure out! ☺︎   The operators for the components of the spin 
vector  

!
S = (Sx , Sy , Sz )  for a spin-½ particle are usually written as follows :

	 	
 
Sx,y,z ≡

!
2
σ x,y,z   with the Pauli spin matrices  σ x ,σ y,σ z =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
, 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟
, 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

Finally, all the angular momentum algebra we derived for  
!
L  is copied straight over to  

!
S : 

	 	 ● commutators: 	 	 Ŝ2, Ŝx,y,z⎡⎣ ⎤⎦ = 0 ,	 	
 
Ŝx , Ŝy⎡⎣ ⎤⎦ = i! Ŝz  & cyclic permutations

	 	 ● ladder ops for Ŝz :	 Ŝ± ≡ Ŝx ± i Ŝy ,	 	 	  Ŝ± s, ms = ! s(s +1)−ms (ms ±1) s, ms±1

Problem 1 : A Spin Measurement	 Checkpoints 1

We have a spin-½ particle in this state : 

	 	 χ = A 3
4

⎛
⎝⎜

⎞
⎠⎟
≡ 3A χ+ + 4A χ−

(a)  Find the constant A required to normalize this spinor (i.e. to make it represent a total probability of 1). 

(b)  If we measured Sz ,  what is the probability that we would find the spin in the –z direction? 

(c)  If instead we measured Sx , what is the probability that we would find the spin in the +x direction ? 

(d)  Wow!  That’s amazingly close to 1.  Sanity-check your result by calculating the probability that we would 
instead find the spin in the –x direction.  Does your result confirm what you found in part (b)?  Why or why not?

Problem 2 : Spin 1/2 Matrices 	

Let’s build the operators {Sx, Sy, Sz} for a spin-½ particle ourselves so that they will never be mysterious. 

(a)  Sz is easy to get because you know exactly what Sz does when it acts on our two basis spinors 

1 Q1 (a)  1/5   (b)  16/25  (c)  Hint: “Project Onto Eigenstates” ☺︎ …. bigger Hint: measuring a quantity Q in QM means (1) Find the 
eigenstates |eq> of the corresponding operator Q then … what? … (2) project the system’s state |ψ> onto each e-state |eq> in turn → 
the |magnitude|² of those projections is the probability of obtaining each eigenvalue q : Prob(q) = |< eq | ψ >|²  … You are measuring Sx 
so you need the eigenvectors of Sx ; find the eigen-stuff of σx instead so you don’t have to carry the spin-magnitude ℏ/2 around … 
for a 2x2 matrix, just guess the eigenvectors and/or eigenvalues; alternatively, you can go the full brute-force determinant route … 
the eigenvalues of σx are obviously +1 and –1, as for all the Pauli spin matrices … the eigenvectors of σx are (1 1) and (1 –1) … 
except you have to normalize them, so you get a 1/sqrt(2) on each … Answer: Prob of getting Sx positive is 49/50.   (d) must be 1/50 
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,

By construction these spinors are eigenfunctions of Sz so you know what you must get when Sz acts on each one.  
Using that knowledge, write down the matrix for the Ŝz  operator.  (Need a reminder? → see Lec08B-3.) 

(b)  Now consider the step-up and step-down operators S+ and S–.  You know what they do to our basis states:

	 	
 
S± sms = ! s(s +1)−m(m ±1) s ms ±1( ) ,

(You derived that big square-root factor on your homework for L±.)  Knowing the action of S+ and S– on our 
basis states, go ahead and write down the matrices for S+ and S–.  
▶ NOTE: What do you get when you step-down the state with the lowest eigenvalue?  The only answer that 
makes any sense is zero.  You get zero when you step-down the bottom eigenstate (S– χ– = 0) or step-up the top 
eigenstate (S+ χ+ = 0).  You can confirm that the boxed formula does indeed give you this necessary result.

(c)  Finally, we will build the trickiest matrices, those for Sx and Sy, using the raising and lowering operators : 

	 	 S± = Sx ± i Sy

Invert these relations to obtain Sx and Sy in terms of S+ and S–.  You already know what the S+ and S– matrices 
are, so you can immediately get Sx and Sy!  Compare your results to the Pauli spin matrices given previously.

Problem 3 : Spin 1 Matrices 	 adapted from Gr 4.31

Using the exact same strategy that you just used for spin-½, construct the matrix representations of the operators 
Sz  then Sx  and Sy  for the case of a spin 1 particle.  Note that these spin matrices will be 3x3, not 2x2, since 
the spinor s=1ms  for a spin-1 particle has three possible states.  Be sure to start with Sz  to gain confidence …
then build the S+ and S– matrices … then Sx and Sy. 

Problem 4 : Spin ½ Practice! 	 adapted from Gr 4.27, Checkpoints 2 & 3

An electron is in the spin state χ = A 3i
4

⎛
⎝⎜

⎞
⎠⎟

.  

(a)  Determine the normalization constant A.

(b)  Find the expectation values of Sx, Sy, and Sz.

2 Q3  First some jargon busting!  → The word “spinor” just appeared without comment!  What is that ?  It is simply a convenient 
word to refer to the spin portion of a particle’s wavefunction, whether in the form of a ket |s ms> or a column vector with 2s+1 entries.
OK now the spin-1 matrices (or to be precise, the matrix representation of the spin-1 operators that were requested): 

 

Sz = !
1 0 0
0 0 0
0 0 −1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

…

 

S+ = 2 !
0 1 0
0 0 1
0 0 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, 

 

S− = 2 !
0 0 0
1 0 0
0 1 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 … 

 

Sx =
!

2

0 1 0
1 0 1
0 1 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

, 

 

Sy =
i!

2

0 −1 0
1 0 −1
0 1 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3 Q4  (a) A=1/5  (b) <Sx > = 0, <Sy > = –12ℏ / 25,  <Sz > = –7ℏ / 50   (c)  { σSx, σSy, σSz } = ℏ { 1/2,  7/50,  12/25 }  

          (d1)  σSx σSy = ℏ² 7/100  …? ≥ ? …  ℏ/2 | < Sz > | = ℏ² 7/100  ✔ uncertainty limit saturated

          (d2)  σSy σSz = ℏ² 84/1250  …? ≥ ? …  ℏ/2 | < Sx > | = 0  ✔ uncertainty principle imposes no limits  trivially fulfilled

          (d3)  σSz σSx = ℏ² 6/25  …? ≥ ? …  ℏ/2 | < Sy > | = ℏ² 6/25  ✔ uncertainty limit saturated



(c)  Find the “uncertainties” = standard deviations σ Sx ,σ Sy,σ Sz . 

(d)  Confirm that your results are consistent with all three uncertainty principles: 

	 	
 
σ Sxσ Sy ≥

1
2i

Sx , Sy⎡⎣ ⎤⎦ = !
2

Sz    and its 2 cyclic permutations  

Not-A-Problem : The Pauli Exclusion Principle 	

Chemistry is almost entirely explained by the way the electrons in atoms occupy the various states | n l ml ms >
(also called shells, or orbitals) that are available to them.  So far we have only considered hydrogenic atoms, 
with one electron.  What happens in the normal case when there are many electrons in a atom?  We know there 
are many states | n l ml ms > available for the electrons to occupy, but which states do they choose to occupy?  
Systems generally arrange themselves into the state of lowest potential energy, so the 17 electrons in a chlorine 
atom might all pile into the ground state n = 1, l = 0, ml = 0, ms = ±½ .  If they do, then the 18 electrons in an 
argon atom do as well … but that is exceedingly unlikely because chlorine and argon behave in totally different 
ways as regards binding to other atoms.  Chlorine loves to bind to atoms like sodium and potassium, making 
salts, while argon is a “noble gas” that doesn’t like to bind to any other atoms.  Wolfgang Pauli figured out the 
solution in 1925 : two electrons can never occupy the same state.  This was later broadened to the generalized 
Pauli exclusion principle : 

Two identical particles with ½-integer spin can never occupy the same state. 

Particles with ½-integer spin acquired the name fermions, with the electron being by far the most common 
example.  Particles with integer spin are called bosons and they do not obey any exclusion principle, they can 
all pile into the same state, no problem.  

The Pauli exclusion principle plus the spectrum of available electron states in an atom explains chemistry, more 
or less.  The treatment of identical particles is coming up and it will bring us the 6th and final axiom of QM. 


