
Discussion 12 – Hydrogenic Atom : Radial Wavefunction
In Discussion 11 you separated the wavefunction and Schrödinger equation for any central potential V(r) into a 
radial part R(r) and an angular part Y(θ,φ).  You solved the angular part; that gave you the spherical harmonics 
Y l
m (θ ,φ) .  In Homework 11, you solve the radial equation for the simple harmonic oscillator.  Here, we will 

solve the radial equation  for a very important system indeed: a hydrogenic atom , namely an atom with a 
single electron of charge e and a nucleus of charge Ze.  The central potential seen by the electron is

	 	 V (r) = − Ze2

4πε0r
 

in SI units.  At right is the same strategy box as on homework; it is 
pretty much universal for solving the radial part of the spherically-
separated Schrödinger equation.  It greatly resembles the method you 
used to obtain the energy eigenfunctions of a harmonic oscillator in a 
Cartesian coordinate, but there are two important differences when the 
radial coordinate r is the independent variable .The differences are 
highlighted in red.   

Problem 1 : Separation of Variables & Step 1               Checkpoints 1

Our goal is, as always, to “solve the Schrödinger equation”, i.e. to find 
the eigenstates of the Hamiltonian, which are the energy eigenstates of 
the system.  Last week you made huge progress: you found that for a 
central potential V(r), 
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(a)  Your separated form  ψ (
!r ) = R(r)Y (θ ,φ)  led to a class of solutions Ylm (θ ,φ)  for the angular part that are 

eigenfunctions of both L² and Lz , with eigenvalues  !
2l(l +1)  and  !m  respectively.  Plug this info into the SE, 

	 	 Ĥ R(r) Y l
m (θ, φ) = E R(r) Y l

m (θ, φ) ,

to obtain the radial equation for R(r).    

(b)  The new element in step 1 of the strategy box is to switch from R(r) to u(r) ≡ r R(r).  (This reduces the 
number of terms and makes the resulting equation more similar in form to the 1D SE.)  It’s just algebra: 

	 	 in terms of u(r) ≡ r R(r) ,   the radial SE is   
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Next, we switch to dimensionless variables as much as possible.  This is still step 1 and will enormously 

Radial SE : Strategy Box
1. Use dimensionless quantities to 

simplify equation to solve (SE), 
and switch to u(r) ≡ r R(r)

2. Find asymptotic behaviour of 
solutions as r → ±∞ and r → 0 
to ensure normalizability.

3. Guess ψ = asymptotic behaviour 
× power series … & plug in SE.

4. Terminate power series to 
again ensure normalizability.
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V (r) − E[ ]R = l l + 1( )R   (b) remember: ℏ has units of angular momentum … answer: 1/distance².  
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   (d)  Hint: think of the force and/or potential energy between two charges … 

answ: energy · distance  (e) energy · distance  (f) 197 eV·nm  (g,h) checked by later parts  (i) λ = Zα −2mc2 / E   (j) 0.53 × 10–10 m



simplify our work.  It seems clear that we should multiply the radial SE by  −2m / !2 .  That will give  2mE / !2

on the right-hand side.  What are the units of  2mE / !2 ? 

(c)  To make all the coefficients in front of u(r) dimensionless, we should therefore multiply the entire radial SE 
by  −2m / !2 × distance² … so by  −2mr

2 / !2 .  Multiply the radial SE in the box by  −2mr
2 / !2  and rearrange the 

terms a bit so that the term with u′′ is on its own on the left-hand side.  

(d)  Next let’s work on the potential the electron sees from the singly-charged nucleus, 

	 	 V (r) = − Ze2

4πε0r
First, here are some REALLY BIG THINGS TO KNOW.  What are the units of e² / 4πε0 ?  Tactic: think of a 
familiar formula (look up …) that is close to the combination you are analyzing; that is usually the fastest way 
to figure out the units of a term with a quantity like ε0 in it that has highly non-trivial units.  

(e)  What are the units of the EXTREMELY USEFUL combination  !c ?  

(f)  Calculate  !c  in units of eV · nm, where 1 eV = 1.6 × 10–19 J of energy and 1 nm = 10–9 m of distance. 
Totally equivalent units are MeV · fm, where 1 MeV = 106 eV and 1 fm = 10–6 nm. 

(g)  197 is so close to 200 that EVERYONE in nuclear / particle physics knows that  !c = 200 MeV ⋅ fm , and 
EVERYONE in atomic / optical physics knows that  !c = 200 eV ⋅nm .  This is accurate to 1.5%, perfect! 
Super!  OK, now take the ratio of the combinations in parts (d) and (e).  This ratio is universally called α :

It is dimensionless by construction, so it is a dimensionless measure of the strength of the 
electromagnetic interaction.  It is often called the electromagnetic coupling constant.  
Using some consistent set of units, calculate the inverse of this number, 1 / α.  

(h)  α = 1/137  to 4 significant digits!  This is also a BIG THING TO KNOW. 
The particle whose wavefunction we are calculating is an atomic electron.  Its mass m appears in our equations.  
Well, everyone in atomic or subatomic physics knows not the mass m of elementary particles exactly, but 
instead their rest energy mc2.  That comes out in units of energy, and for atomic or subatomic particles, the 
perfect energy unit is the electron-volt, eV = 1.6 × 10–19 J.  In atomic physics, the electron mass is universally 
known as mc2 = 0.5 MeV , which is another BIG THING TO KNOW.  Now back to the radial equation. We 
found the dimensionless combination  2mEr

2 / !2  in an earlier part, so let’s introduce variables to exploit that: 

	 	
 
K ≡ −2mE

!
= −2mc2E

!c
  has distance units, ∴  ρ ≡ K r   is dimensionless. 

ρ ≡ Kr  will serve as our dimensionless distance.  From part (c), our radial equation is :
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Rewrite this, replacing all incidences of r with ρ /K , so that we are solving for u(ρ)  now instead of u(r) , and 
so that u′′ now means d 2u / dρ 2  instead of d 2u / dr2 .

(i)  To the right of the obviously dimensionless term l(l+1) is the electric potential term.  It should now look like
<dimensionless_prefactor> · ρ .  What is this <dimensionless_prefactor> ?  We’ll henceforth label it λ.  

 
α ≡ e2
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CHECKPOINT:  At this point your radial SE should have this form : 

	 	 ′′u (ρ) = u(ρ) 1− λ
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(j)  There’s one more important quantity to introduce: the Bohr radius, a0 =  !c / (αmec
2 ) .  Calculate its value

using the fabulous numbers from the boxes on the previous page.  It will turn out to be the average radius of the 
hydrogen ground state (in the somewhat unusual manner shown below). 

That was the last BIG THING TO KNOW, i.e. the last of the numerical quantities that every physicist knows by 
heart (at least, those related to atoms).  
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Problem 2 : Step 2 = Asymptotic Behaviour	 Checkpoints 2

Next step: find the asymptotic behaviour of u(ρ) .  As you see in the strategy box, you have to consider not only 
the behaviour as ρ = K r→∞  but also the behaviour as ρ → 0 .  The spherical coordinate system has 
“coordinate singularities” at the origin r = 0 and at the poles θ = 0 and π.  We must always check these spots for 
unphysical behaviour like functions going to ∞ (which a physical wavefunction cannot do!)  

(a)  From the radial equation in the box at the top of the page, take the approximation ρ →∞  and see what 
physically-reasonable asymptotic solution u∞(ρ)  you obtain.  REMEMBER from class: the asymptotic 
solution is an approximate solutions to an approximate equation, which takes a bit of getting used to.

(b)  Now do the same for the limit ρ → 0 .  What physically reasonable asymptotic solution u0 (ρ)  do you 
obtain in this region?  

Problem 3 : Step 3 = Power Series Solution	 Checkpoints 3

Now that we have the behaviour of u(ρ)  at large and small ρ , we can assume that the remaining behaviour in 
the “middle” region of finite ρ  is a well-behaved function that we will call h(ρ) .  Our proposed solution form 
is then u(ρ) = u∞(ρ) u0 (ρ) h(ρ) .  We will try a power-series solution for h(ρ) – the polynomial method : 

	 	 u(ρ) = e−ρ ρ l+1 h(ρ)      where     h(ρ) = aj ρ
j

j=0

∞

∑
We plug this u(p)  back into the radial SE and, after some tedious and completely uninstructive algebra we get 
an equation for h(ρ)  : 

	 	 ′′h ρ[ ]+ ′h 2 −ρ + l +1( )⎡⎣ ⎤⎦ + h λ − 2 l +1( )⎡⎣ ⎤⎦ = 0

Using this equation, find the recursion relation for the coefficients aj in the power series.  

2 Q2 (a)  u∞ (ρ ) ~ e
−ρ     (b)  u0 (ρ ) ~ ρ l+1     

3 Q3  a j+1 = a j
2(l + 1+ j) − λ

( j + 1) 2 l + 1( ) + j[ ]
  



Problem 4 : Step 4 = Truncation of Series → Energy Spectrum	 Checkpoints 4

We must make sure that the power series h(ρ)  doesn’t alter the asymptotic behaviour that we already took care 
of with u∞(ρ) .  Let’s leave off questions of convergence for the moment; we know that we will for sure leave
the asymptotic behaviour unchanged if we truncate the power series for h(ρ)  at some finite index jmax.   

(a)  Perform this truncation: restrict some parameter of our system so that aj max is the last non-zero term in the 
series.  You will obtain the discrete energy spectrum En for the hydrogen atom. 
IMPORTANT: What is n, you ask?  You define it!  Pick something that makes the energy formula En as simple 
as possible, then see if your choice matches the standard one given in the checkpoint. ︎  
(b)  For a given value of n, what is the allowed range of l ?  You should find another very important constraint!

(c)  Was this truncation necessary?  Using what we learned in class, show that it was!

4 Q3 (a)  n ≡ jmax + l + 1  →  En = −
Z 2α 2mc2

2n2
   (b)  l < n  because of  n ≡ jmax + l + 1 and the fact that jmax = max-of-index-j ≥ 0   

	 (c)  Taylor-expand the asymptotic behaviour e−ρ  as a power series bj ρ
j

j∑  … find bj = (−1)
j / j! … compare 

a j+1
a j

 & 
bj+1
bj

	 … at very large j (the only terms that affect the ρ→± ∞  behaviour of these series) you find 
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	 … since the “b-series” is e−ρ ,  you can conclude that the “a-series”, h(ρ ) , has asymptotic behaviour e+2ρ

	 … h(ρ )→ e+2ρ  as will destroy the e−ρ  behaviour that we know we must get as ρ→∞ , ∴ we MUST truncate the a-series


